BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALL - 620 024

B.Sc. Physics / Chemistry / Industrial Electronics / Geology - Students

(For the candidates admitted from the academic year 2016-17 onwards)

ALLIED MATHEMATICS

ALLIED COURSE I

CALCULUS AND FOURIER SERIES

Objects:

- 1. To learn the basic need for their major concepts
- 2. To train the students in the basic Integrations

UNIT I

Successive Differentiation - nth derivative of standard functions (Derivation not needed) simple problems only-Leibnitz Theorem (proof not needed) and its applications- Curvature and radius of curvature in Cartesian only (proof not needed)-Total differential coefficients (proof not needed) - Jacobians of two & three variables -Simple problems in all these.

UNIT II

Evaluation of integrals of types

1]
$$\int \frac{px+q}{ax^2+bx+c} dx$$

2]
$$\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$$

1]
$$\int \frac{px+q}{ax^2+bx+c} dx$$
 2] $\int \frac{px+q}{\sqrt{ax^2+bx+c}} dx$ 3] $\int \frac{dx}{(x+p)\sqrt{ax^2+bx+c}}$

4]
$$\int \frac{dx}{a + b \cos x}$$

5]
$$\int \frac{dx}{a + b \sin x}$$

4]
$$\int \frac{dx}{a+b\cos x}$$
 5] $\int \frac{dx}{a+b\sin x}$ 6] $\int \frac{(a\cos x + b\sin x + c)}{(p\cos x + q\sin x + r)} dx$

Integration by trigonometric substitution and by parts of the integrals

1]
$$\int \sqrt{a^2 - x^2} \, dx$$

$$2] \int \sqrt{a^2 + x^2} dx$$

1]
$$\int \sqrt{a^2 - x^2} dx$$
 2] $\int \sqrt{a^2 + x^2} dx$ 3] $\int \sqrt{x^2 - a^2} dx$

UNIT III

General properties of definite integrals - Evaluation of definite integrals of types

1]
$$\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}}$$

1]
$$\int_{a}^{b} \frac{dx}{\sqrt{(x-a)(b-x)}}$$
 2] $\int_{a}^{b} \sqrt{(x-a)(b-x)} dx$ 3] $\int_{a}^{b} \sqrt{\frac{x-a}{b-x}} dx$

3]
$$\int_{a}^{b} \sqrt{\frac{x-a}{b-x}} dx$$

Reduction formula (When n is a positive integer) for

$$1] \int_{a}^{b} e^{ax} x'' dx$$

$$2]\int_{a}^{b} \sin^{n} x dx$$

1]
$$\int_{a}^{b} e^{ax} x^{n} dx$$
 2] $\int_{a}^{b} \sin^{n} x dx$ 3] $\int_{a}^{b} \cos^{n} x dx$

4]
$$\int_{0}^{x} e^{ax} x^{n} dx$$
 5] $\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$
6] Without proof $\int_{0}^{\frac{\pi}{2}} \sin^{n} x \cos^{m} x dx$ - and illustrations

UNIT IV

Evaluation of Double and Triple integrals in simple cases -Changing the order and evaluating of the double integration. (Cartesian only)

UNIT V

Definition of Fourier Series – Finding Fourier Coefficients for a given periodic function with period 2π and with period 2ℓ - Use of Odd & Even functions in evaluating Fourier Coefficients - Half range sine & cosine series.

TEXT BOOK(S)

- S. Narayanan, T.K. Manichavasagam Pillai, Calculus, Vol. I, S. Viswanathan Pvt Limited, 2003
- 2. S. Arumugam, Isaac and Somasundaram, Trigonometry & Fourier Series, New Gamma Publishers, Hosur, 1999.

Allied-Mathematics-I (Physics & Chemistry) Calculus and fourier Series Unit-I Chapter-III - Successive Differentiation It a function y=f(x) of x. Differentiale this function with respect to 'x', we get dy = y' = f'(x). This is called first derivative. Again differentiate w.r.t. 'a', we get $\frac{d^2y}{dn^2} = y'' = f''(x)$. This is called second derivative and so on upto nth derivative. This is called successive differentiation. y=1100 = 77 = 100 Ist derivative is dy = y' = 20x 2nd derivative $y \frac{d^2y}{dx^2} = y'' = 80x^3$ 3^{rd} derivative is $\frac{d^3y}{dx^3} = y''' = 240 x^2$ 4th derivative is day = y'v = 480 x 5th derivative is dry = y = 480. Note: 1) The symbols of the successive derivatives are usually abbreviated as follows: $\frac{d}{dx}\left(\frac{dy}{dn}\right) = \frac{d^2y}{dn^2} = D^2y$

$$\frac{d}{dx} \left[\frac{d}{dx} \left(\frac{dy}{dx} \right) \right] = \frac{d}{dx} \left[\frac{d^3y}{dx^3} \right] = \frac{d^3y}{dx^3} = D^3y$$

$$\frac{d}{dx} \left(\frac{d^{3-3}y}{dx^{3-3}} \right) = \frac{d^3y}{dx^{3-3}} = D^3y$$

$$\frac{d^3y}{dx^{3-3}} = \frac{d^3y}{dx^{3-3}} =$$

2) If
$$y = \frac{1}{x^2}$$
, define $y^n(0)y_n$.

Solor:

$$y^n = -2x^3 = -(2!) x^3$$

$$y^n = -2x x^5 = -(x!) x^5$$

$$y^n = -2x x^5 = -(x!) x^5$$

$$y^n = (-1)^n (n+1)! x^{(n+2)}$$

$$y^n = (-1)^n (n+1)! x^$$

2. Find y_n , when $y = \frac{\chi^2}{(\chi - 1)^2 (\chi + 2)}$ Soln: Given that $y = \frac{x^2}{(x-1)^2(x+2)}$ $\frac{\chi^{2}}{(\gamma-1)^{2}(\gamma+2)} = \frac{A}{(\gamma-1)^{2}} + \frac{B}{(\gamma-1)^{2}} + \frac{C}{(\gamma+2)} \to 0$ $= \frac{\chi^2}{(n-1)^2(n+2)} = \frac{A(n-1)(n+2) + B(n+2) + C(n-1)^2}{(n-1)^2(n+2)}$ $3^2 = A(n-1)(n+2) + B(n+2) + C(n-1)^2 \rightarrow 0$ put x=1, we get | put x=-2, we get $1 = A(0) + B(1+2) + C(0) (-2)^2 = A(0) + B(0) + C(-3)^2$ H = 9C C = 4/a put 2=0, we get 0 = A (-1)(2)+B(2)+((-1)2 -2A+3+4 =0 0 = -2A + 2B + CSub. B and c values, we get $-2A + \frac{10}{9} = 0$ $-2A + 2(\frac{1}{3}) + \frac{1}{4} = 0$ $+2A = \frac{10}{9} \implies A = \frac{10}{9} \times \frac{1}{2}$ $\therefore A = \frac{10}{9}$ Sub. A, B and c values in egg. O, we get $\frac{\chi^{2}}{(\gamma-1)^{2}(\gamma+2)} = \frac{5}{9} \frac{1}{(\gamma-1)} + \frac{1}{3} \frac{1}{(\gamma-1)^{2}} + \frac{1}{9} \frac{1}{(\gamma+2)^{2}}$ $= \frac{5}{9} (3-1)^{7} + \frac{1}{3} (3-1)^{2} + \frac{14}{9} (3+2)^{-1}$ $\frac{1}{3} \left(\frac{n^2}{(n-1)^2(n+2)} \right) = \frac{5}{9} D^n \left[(n-1)^{-1} \right] + \frac{1}{3} D^n \left[(n-1)^{-2} \right] + \frac{14}{9} D^n \left[(n+2)^{-1} \right]$

$$\frac{1}{3} = \frac{1}{9} \left[\frac{n! (-1)^n}{(x-1)^{n+1}} \right] + \frac{1}{3} \left[\frac{(n+1)!}{(x-1)^{n+2}} \right] + \frac{1}{9} \left[\frac{(-1)^n}{(x+2)^{n+1}} \right]^{\frac{1}{n}} \right] \\
= \frac{1}{9} \left[\frac{(-1)^n}{(x+2)^{n+1}} \right] + \frac{1}{3} \left[\frac{(n+1)!}{(x-1)^{n+2}} \right] + \frac{1}{4} \left[\frac{n!}{(x+2)^{n+1}} \right]^{\frac{1}{n+2}} \\
= \frac{1}{9} \left[\frac{(n+1)!}{(x+2)^{n+1}} \right] + \frac{1}{3} \left[\frac{(n+1)!}{(x-1)^{n+2}} \right] + \frac{1}{4} \left[\frac{n!}{(x+2)^{n+1}} \right]^{\frac{1}{n+2}} \\
= \frac{1}{9} \left[\frac{1}{(x+2)^{n+1}} \right] + \frac{1}{3} \left[\frac{(n+1)!}{(x+2)^{n+2}} \right] + \frac{1}{4} \left[\frac{n!}{(x+2)^{n+1}} \right]^{\frac{1}{n+2}} \\
= \frac{1}{9} \left[\frac{1}{(x+2)^{n+1}} \right] + \frac{1}{3} \left[\frac{n+1}{(x+2)^{n+2}} \right] + \frac{1}{4} \left[\frac{n!}{(x+2)^{n+1}} \right]^{\frac{1}{n+2}} \\
= \frac{1}{9} \left[\frac{1}{(x+2)^{n+1}} \right] + \frac{1}{3} \left[\frac{n+1}{(x+2)^{n+2}} \right] + \frac{1}{4} \left[\frac{n!}{(x+2)^{n+1}} \right]^{\frac{1}{n+2}} \\
= \frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{(x+2)^{n+1}} \right] + \frac{1}{3} \left[\frac{1}$$

$$\begin{array}{c} (3 \cos \delta)^{2} & (2 \sin \delta)^{2} = (3 + \frac{1}{3})^{2} \cdot (3 + \frac{1}{3})^{2} \\ (3 - \frac{1}{3})^{2} & (2 \sin \delta)^{2} = (3 + \frac{1}{3})^{2} \cdot (3 + \frac{1}{3})^{2} \cdot (3 + \frac{1}{3})^{2} \\ \Rightarrow (-i) a^{12} \cos^{2} \sin^{2} \delta = (x^{2} - \frac{1}{x^{2}})^{2} \cdot (x - \frac{1}{x^{2}})^{2} \\ = (x^{2})^{2} - 5c_{1} \cdot (x^{2})^{4} \cdot (\frac{1}{x^{2}}) + 5c_{2} \cdot (x^{2})^{3} \cdot (\frac{1}{x^{2}})^{2} \\ = x^{4} + c_{1} \cdot x^{2} \cdot \frac{1}{x^{4}} - 5c_{2} \cdot (x^{2})^{6} \cdot (\frac{1}{x^{2}})^{4} + 5c_{2} \cdot (x^{2})^{3} \cdot (\frac{1}{x^{2}})^{4} \\ = x^{4} + c_{1} \cdot x^{2} \cdot \frac{1}{x^{4}} - 5c_{2} \cdot (x^{2})^{6} \cdot (\frac{1}{x^{2}})^{2} + 5c_{1} \cdot (x^{2})^{3} \cdot (\frac{1}{x^{2}})^{4} \\ = x^{4} - c_{1} \cdot x^{2} \cdot \frac{1}{x^{2}} - 5c_{2} \cdot (x^{2})^{6} \cdot (\frac{1}{x^{2}})^{2} + 5c_{1} \cdot (x^{2})^{3} \cdot (\frac{1}{x^{2}})^{4} \\ = x^{4} - c_{1} \cdot x^{2} \cdot \frac{1}{x^{2}} + 10 \cdot x^{2} \cdot \frac{1}{x^{4}} - 10 \cdot x^{4} \cdot \frac{1}{x^{4}} \\ = x^{4} - c_{1} \cdot x^{4} + 10 \cdot x^{2} - \frac{10}{x^{4}} + \frac{2}{x^{4}} - \frac{1}{x^{4}} \cdot \frac{1}{x^{4}} - 2c_{1} \cdot x^{4} + 10 - \frac{10}{x^{4}} \\ = x^{2} - c_{1} \cdot x^{4} \cdot \frac{1}{x^{4}} + 10 \cdot x^{4} - 2c_{1} \cdot x^{4} + 10 - \frac{10}{x^{4}} \\ = x^{2} - c_{1} \cdot x^{4} \cdot \frac{1}{x^{4}} + 10 \cdot x^{4} - 2c_{1} \cdot x^{4} + 10 - \frac{10}{x^{4}} \\ = x^{2} - c_{1} \cdot x^{4} \cdot \frac{1}{x^{4}} + 10 \cdot x^{4} - 2c_{1} \cdot x^{4} + 10 \cdot x^{4} - 2c_{1} \cdot x^{4} + 10 \cdot$$

7 First the nth differential coefficient of log (1-12)

Log (1-12) = log (2-1) + log (2+1)

Dⁿ (log (1-12)) = Dⁿ (log (2-1)) + Dⁿ (log (2+1))

= (-1)^{n-1} (n-1)! (-1)^{n-1} (n-1)! 1^{n}

= (-1)^{n-1} (n-1)! (-1)^{n-1} (2+1)^{n}

= (-1)^{n-1} (n-1)! (2+1)^{n}

There Works:

Find the nth differential coefficient of:

(a)
$$\frac{x^{n}}{x^{n}}$$
 (b) $\frac{1}{2x^{n}}$ (c) $\frac{x^{n}}{x^{n}}$ (d) $\frac{x^{n}}{x^{n}}$ (e) $\frac{x^{n}}{x^{n}}$ (f) $\frac{x^{n}}{x^{n}}$ (c) $\frac{x^{n}}{x^{n}}$ (d) $\frac{x^{n}}{x^{n}}$ (e) $\frac{x^{n}}{x^{n}}$ (f) $\frac{x^{n}}{x^{n}}$ (f) $\frac{x^{n}}{x^{n}}$ (g) $\frac{x^{n}}{x^{n}}$ (e) $\frac{x^{n}}{x^{n}}$ (f) $\frac{x^{n}}{x^{n}}$ (f) $\frac{x^{n}}{x^{n}}$ (g) $\frac{x^{n}}{x^{n}}$ (h) $\frac{x^{n}}{x^{n}}$ (h)

1) I.f
$$y^{3} - 3ax^{2} + x^{3} = 0$$
, Prove that $\frac{d^{3}y}{dx^{2}} + \frac{2a^{2}x^{2}}{y^{5}} = 0$.

Proof: Given that

$$y^{3} - 3ax^{2} + x^{3} = 0 \longrightarrow 0$$

$$3y^{2} \frac{dy}{dx} - 3a(2x) + 3x^{2} = 0$$

$$3y^{2} \frac{dy}{dx} - 3a(2x) + 3x^{2} = 0$$

$$3y^{2} \frac{dy}{dx} - 5ax + 3x^{2} = 0$$

$$3y^{2} \frac{dy}{dx} - 5ax - 3x^{2}$$

$$3y^{2} = \frac{3a^{2} - 3x^{2}}{3y^{2}}$$

$$3y^{2} = \frac{3a^{2} - 3a^{2}}{3y^{2}}$$

$$3y^{2} = \frac{3a^{2} - 3a^{2}}{$$

$$\frac{dy}{dx} = \frac{1}{2a} \frac{1}{a \cos^2 t_2} \frac{1}{2} \frac{1}{a (1-a)t}$$

$$= \frac{1}{2a} \frac{1}{a \cos^2 t_2} \frac{1}{2} \frac{1}{3in^2 t_2}$$

$$= \frac{1}{4a} \frac{1}{\sin^2 t_2} \frac{1}{3in^2 t_2}$$

$$= \frac{1}{4a} \frac{1}{\sin^2 t_2} \frac{1}{\sin^2 t_2}$$

$$\frac{d^2y}{dx^2} = \frac{1}{4a} \frac{1}{\sin^2 t_2}$$

$$\therefore \frac{d^2y}{dx^2} = \frac{1}{4a} \frac{1}{\sin^2 t_2}$$

$$\frac{d^2y}{dt} = \frac{1}{2} \frac{1}{(\cos_2 t)^2} \frac{1}{(\cos_2 t)^2} \frac{1}{(\cos_2 t)^2} \frac{1}{(\cos_2 t)^2}$$

$$\frac{d^2y}{dt} = \frac{1}{(\sin_2 t)^2} \frac{1}{(\cos_2 t)^2}$$

$$\frac{d^2y}{dx} = \frac{1}{(\sin_2 t)^2} \frac{1}{(\cos_2 t)^2}$$

$$\frac{d^2y}{dx} = \frac{1}{(\cos_2 t)^2} \frac{1}{(\cos_2 t)^2}$$

$$\frac{d^2y}{dx}$$

$$\frac{1}{3} = \frac{3y - x^{2}}{y^{2} - ax} = \frac{4y - x^{2}}{y^{2} - ay}$$

$$\frac{1}{3} = \frac{3y - x^{2}}{y^{2} - ax} = \frac{4y - x^{2}}{y^{2} - ay}$$

$$\frac{1}{3} = \frac{3y - x^{2}}{y^{2} - ay}$$

$$\frac{1}{3} = \frac{3y - x^{2}}{y^{2} - ay}$$

$$\frac{1}{3} = \frac{3y - x^{2}}{y^{2} - ay}$$

$$\frac{1}{3} = \frac{1}{3} = \frac{1}{3}$$

(16) Leibnitz formula for the no derivative of a product Laboritz Theorem: (Statement only proof not needed) (x) among It u and v are functions of x, and n'is positive real number, then D(uv) = Unv +nc, Uny V, +nc, Un-2 V2 + ... +ncr, Uh -r+1/2 +nc, Un-, V, + ... + u. Vn. Problems: Find the nth differential coefficient of 1) xe2, 2) x2e3x, 3) x Sinx, 4) x2 cosx, 5) e7 logn, 6) x3 Sin3x 7) x a2 8) x2 sin3x. 916, (2,) = 6, ou ou 2) 22 e3x Leibnitz theorem Un-1 /1 +n (2 4, 2 /2 + ... + U /n. $\mathcal{D}^{n}(e^{3n}n^{2}) = \mathcal{D}^{n}(e^{3n}) n^{2} + nc, \mathcal{D}^{n-1}(e^{3n}) \mathcal{D}(n^{2}) + nc_{2} \mathcal{D}^{n-2}(e^{3n}) \mathcal{D}^{2}(e^{3n})$ $= 3^{n} e^{3n} n^{2} + \frac{n}{1!} 3^{n-1} e^{3n} (2n) + \frac{n(n-1)}{2!} 3^{n-2} e^{3n} (2)$ $5^{\frac{3}{12}} = 3^{\frac{3}{2}} x^{2} + n 3^{\frac{1}{2}} e^{3x} (2x) + \frac{n(n-1)}{x} 3^{\frac{1}{2}} e^{3x} (x)$ $= 3^{1} e^{3x} x^{2} + 2n 3^{n-1} e^{3x} x + n(n-1) 3^{n-2} e^{3x}$ = 342 (3) [32 = 1/2+ dn. 3/2 + n. 1/2)
= (342 = 32 [92+6nx+n. 1/2] $g^{h}(e^{3x}x^{2}) = e^{3x} \left[3^{n}x^{2} + 3^{n-1} 2nx + 3^{n-2} n(n-1) \right]$

A) x cal x Leibnitz theorem D'(uv) = Un V+nc, Un-1 V, +nc2 Un-2 V2+···+ UVn : D' (cos n. x2) = D' (cos n) . x2+11c, 5 (cos n) (2x)+11c2 D-2 (cos n) (2) = 1 cos (1 +x) . x2+ 1 1 1 cos (1-1) 1 +x) (2x) 1 (n-1) n-2 (co) (n-2) + x).2 = $\cos(\frac{n\pi}{2} + \pi) \pi^2 + n \cos(\frac{(n-1)\pi}{2} + \pi) 2x + n(n-1) \cos(\frac{(n-2)\pi}{2} + \pi)$ $\int_{-\infty}^{\infty} \left(\cos x \cdot x^{2} \right) = x^{2} \cos \left(\frac{m}{2} + x \right) + 2n x \cos \left(\frac{(n-1)\pi}{2} + x \right) + n(n-1) \cos \left(\frac{(n-2)\pi}{2} + x \right)$ 5) ex log x 3"(uv) = Un V+nc, Un-1 V, + nc, Un-2 V2 + ... + UVn (e' log x) = D'(en) log x +nc, D'(en) D (log x) + ... + e' D' (log x) $= e^{2} \log x + \frac{n}{1!} e^{2} \frac{1}{2} + \dots + e^{2} \frac{(-1)^{n-1} (n-1)!}{2^{n}} e^{2} \frac{1}{2^{n}} + \dots + e^{2} \frac{(-1)^{n-1} (n-1)!}{2^{n}} e^{2} \frac{1}{2^{n}} e$: D' (e' log x) = e' (log x + n + ... + (-1) 1-1 (n-1)!) 6) x3 sin3x $D^{n}(uv) = U_{n}V + n(1) U_{n-1}V_{1} + n(2) U_{n-2}V_{2} + \cdots + UV_{n}$:. Dh (sin3x. x3) = Dh [(3/4 Sinx-1/4 Sin 3x). x3] = D (3 sin x - 1 sin 3x). x3+ ne, D (3 sin x - 1 sin 3x) (3x2) +nc2 01-2 (3 sina - 1 Sin 3x) (6x)+nc2 01-3 (3 sina - 1 sin3x)

$$\frac{1}{3!} \int_{-1}^{1} \sin \left(\frac{n\pi}{2} + x_1 \right) - \frac{1}{1} \int_{-1}^{1} 3^n \sin \left(\frac{n\pi}{2} + 2x_1 \right) \right] \cdot x^3$$

$$= \left[\frac{1}{4!} \int_{-1}^{1} \sin \left(\frac{n\pi}{2} + x_1 \right) - \frac{1}{1} \int_{-1}^{1} 3^n \sin \left(\frac{(n-1)\pi}{2} + 2x_1 \right) \right] \cdot (3x^2)$$

$$+ \frac{n(n-1)(3)}{2!} \int_{-1}^{1} \int_{-1}^{n-2} \sin \left(\frac{(n-2)\pi}{2} + x_1 \right) - \frac{1}{1} \int_{-1}^{3-2} \sin \left(\frac{(n-2)\pi}{2} + 2x_1 \right) \right] \cdot (6x)$$

$$+ \frac{(n(n-1)(n-1)}{3!} \left[\frac{3}{4!} \int_{-1}^{n-2} \sin \left(\frac{(n-2)\pi}{2} + x_1 \right) - \frac{1}{1} \int_{-1}^{3-2} \sin \left(\frac{(n-2)\pi}{2} + 2x_1 \right) \right] \cdot (6x)$$

$$+ \frac{(n(n-1)(n-1)}{3!} \left[\frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + x_1 \right) - \frac{1}{4!} \int_{-1}^{3n-2} \sin \left(\frac{(n-2)\pi}{2} + 2x_1 \right) \right]$$

$$+ \frac{n(n-1)}{2!} \left(\frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) \right]$$

$$+ \frac{n(n-1)(n-2)}{4!} \left(\frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) \right]$$

$$+ \frac{n(n-1)(n-2)}{4!} \left(\frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) \right]$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right)$$

$$+ \frac{3}{4!} \sin \left(\frac{(n-2)\pi}{2} + 3x_1 \right) - \frac{3}{4$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(-1)^{n-3}}{(-1)^2} (n-1)(n-2) + 2n(-1)^{n-3}}{(-1)^4} (n-2) \right]$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(n-1)(n-2)}{(n-2)} + 2n(n-2) + n(n-1) \right]$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(n-1)^{n-3}}{(n-2)^{n-3}} \right]$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(n-3)!}{(-1)^{n-3}} \right]$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(n-3)!}{(-1)^{n-3}} \right]$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(n-3)!}{(-1)^{n-3}} \right]$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(n-3)!}{x^{n-2}} \right]$$

$$= \frac{(n-3)!}{x^{n-2}} \left[\frac{(n-3)!}{x^{n-2}$$

21 Using the Leibnitz theorem in (i), we get D' [y2 (1-x2)] - D' [y1x] + m2 D' (y) =0 D'(y2) (1-x2)+nc, D-1(y2) (-2x)+nc2 D-2(y2) (-2) - (D'(y1) 2 +nc, 5'-1(y1) (1) +m2 D' (y) =0 yn+2 (1-x2) + 11 yn+1 (-2x) + n(n-x) yn (-x) - (ynx1 x + n yn) + m2 yn = 0 $(1-x^2)$ $y_{n+2} - 2nx$ $y_{n+1} - n(n-1)$ $y_n - xy_{n+1} - ny_n + m^2y_n = 0$ (1-x2) yn+2-x yn+1 (2n+1)+yn (-n(n-1)-n+m2)=0 $(1-x^2)$ $y_{n+2} - (2n+1) x y_{n+1} + y_n (-n^2 + x - x + m^2) = 0$ $(1-x^2)$ $y_{n+2} - (2n+1) x y_{n+1} + (m^2-n^2) y_n = 0$ Hence (ii) is proved 3) It y= sin'n, Prove that (1-22) y, -ny =0 and (1-x2) yn+2 - (2n+1) x yn+1 - n2yn =0. proof! - y = sin'x Diff. w.r. to 'x', we get di = 1 => VI-n2. y, =1 squaring on both sides, we get => (1-2) y2=1 Again diff. w.r.to'n', we get $(1-x^2)$ 24, 4, + (-2x) $y_1^2 = 0$ 24, [(1-x2) 42 - x4,] =0 Hence the proof. : (1-x2) y2- xy, =0

```
(22)
    Using Leibnitz theorem, we get
    D'(uv) = unv+nc, un 1,+nc, Un, V2 +...+ UVn
 : DI (1-x2) A ] - D, [xA] = 0
 > D[1/2] (1-x2) +nc, Dr1(1/2) (-2x) +nc, Dr2(1/2) (-2)
                          - [Dn(y1) (n)+nc, 5 (y1) (1)] =0
 >> ym2 (1-x2)+ 1 yn+1 (-2x) + n(n-1) yn (-2) - (ym1x+1 yn)=0
 => (1-2) ym2 +n ym1 (-2x) -11(n-1) yn -x ym1-nyn=0
  =) (1-x2) yn+2 - x yn+1 (2n+1) - yn (n(n-1)+n) =0
  => (1-m2) yn+2 - (2n+1) x yn+1 - yn (n2-14+1) =0
   : (1-x2) yn+2 - (2n+1) x yn+1 - n2 yn =0
                Hence the proof.
A) It y = e asin'x, Prove that (1-x2) y2-xy1-ay=0
  Hence show that (1-x2) yn+2-(2n+1) x yn+1-(n2+2) yn=0.
  proof: y= asin'x ->0
      Diff. w.r. to 'n', we get
          y1 = easin'2 (a 1 1-12)
     VI-x2. Y1 = a e asin'x
   :. Ji-n2. y = ay (bg eqn. 0)
    Squaring on both sides, we get
      (1-12) y12 = 2 y2
     Again dift. w.r. to "x", we get
```

(1-x2) 24, 4, + (-2x) 4,2 = a2 (244) 2x, [(1-x2) y2 - y1x] = a2y (2x1) (1-22) 42 - 24, - 92 7 =0 Hence the proof (ii) Using Leibnitz theorem in this egn, , we get Dn(uv) = Unv+nc, Un-1 V,+nc, Un-2 V2+...+UVn. ⇒ D^[(1-x2)y]-D^[xy]-a2 D^(y)=0 => by (1-673/4 $\Rightarrow D^{n}(y_{1}) (1-n^{2}) + nc_{1} D^{n-1}(y_{2}) (-2n) + nc_{2} D^{n-2}(y_{1}) (-2)$ $-[D^{n}(y_{1})(n)+nc, D^{n}(y_{1})(1)]-a^{2}D^{n}(y)=0$ > [yn+2 (1-12)+ 11 yn+1 (-21)+ n(n+1) yn (-2)] - [yn+1. n+ n yn] - a2yn =0 $\Rightarrow (1-x^2) y_{n+2} - 2n x y_{n+1} - n(n-1) y_n - x y_{n+1} - n y_n - a^2 y_n = 0$ =) $(1-\eta^2) y_{n+2} - \chi y_{n+1} (2n+1) - y_n (n(n+1)+n+a^2) = 0$ \Rightarrow $(1-x^2)$ $y_{n+2} - (2n+1)$ $y_{n+1} - (n^2-x+x+a^2)$ $y_n = 0$ $(1-n^2) y_{n+2} - (2n+1) y_{n+1} - (n^2 + a^2) y_n = 0$ Hence the proof 5) It y=a cos (log x) + b sin (log x), show that 2 yn+2 + (2n+1) nyn+1 + (n2+1) yn=0. proof: Given that y= a cos (log x) +b sin (log x) -> 1 Diff. ego. O wirito 'x', we get

$$\Rightarrow y_1 = a \left(-\sin(\log x) \cdot \frac{1}{2} + b \cos(\log x) \cdot \frac{1}{2} \right)$$

$$\Rightarrow y_1 = \frac{1}{x} \left[-a \sin(\log x) + b \cos(\log x) \right] - b \otimes$$

$$\Rightarrow y_2 = \frac{1}{x} \left[-a \cos(\log x) \cdot \frac{1}{x} + b \left(-\sin(\log x) \right) \cdot \frac{1}{x^2} \right]$$

$$+ \left[-a \sin(\log x) + b \cos(\log x) \right] \left(-\frac{1}{x^2} \right)$$

$$\Rightarrow y_2 = -\frac{1}{x^2} \left[a \cos(\log x) + b \sin(\log x) \right] - \frac{1}{x^2} \left[-a \sin(\log x) + b \cos(\log x) \right]$$

$$\Rightarrow y_3 = -\frac{1}{x^2} y - \frac{1}{x} y$$

$$\Rightarrow y_2 = -\frac{1}{x^2} y - \frac{1}{x} y$$

$$\Rightarrow y_3 = -\frac{1}{x^2} y + y + y = 0$$
Using Leibnitz theorem in this egg, we get
$$\Rightarrow y_1 = y_2 + y_1 + y_2 = 0$$
Using Leibnitz theorem in this egg, we get
$$\Rightarrow y_1 = y_1 + y_1 + y_2 = 0$$
Using Leibnitz theorem in this egg, we get
$$\Rightarrow y_1 = y_2 + y_1 + y_2 = 0$$
Using Leibnitz theorem in this egg, we get
$$\Rightarrow y_1 = y_2 + y_1 + y_2 = 0$$

$$\Rightarrow y_1 = y_1 + y_2 + y_1 + y_2 = 0$$

$$\Rightarrow y_1 = y_1 + y_2 + y_1 + y_2 = 0$$

$$\Rightarrow y_1 = y_1 + y_2 + y_1 + y_2 = 0$$

$$\Rightarrow y_1 = y_1 + y_2 + y_1 + y_2 = 0$$

$$\Rightarrow y_1 = y_1 + y_2 + y_1 + y_2 = 0$$

$$\Rightarrow y_1 = y_1 + y_2 + y_1 + y_2 = 0$$

$$\Rightarrow y_1 = y_1 + y_2 + y_1 + y_2 + y_2 + y_1 + y_2 + y_2 + y_1 + y_2 + y_2 + y_2 + y_3 + y_4 + y_4 + y_5 + y_5$$

b. It
$$\cos^{1}(\frac{y}{b}) = \log(\frac{x}{h})^{n}$$
, prove that

 $x^{2}y_{h+2} + (2n-1)xy_{h+1} + 2n^{2}y_{h} = 0$.

Proof: Given that

 $(ai^{-1}(\frac{y}{b})) = \log(\frac{x}{h})^{h} \to 0$
 $(ai^{-1}(\frac{y}{b})) = \frac{1}{\sqrt{1-x^{2}}}$
 $(ai^{-1}(\frac{y}{b})) = \log(\frac{x}{h})^{h} \to 0$
 $(ai^{-1}(\frac{y}{b})) = \frac{1}{\sqrt{1-x^{2}}}$
 $(ai^{-1}(\frac{y$

$$\begin{cases}
y_{n+2} \times^{2} + \frac{n}{1} y_{n+1} (2\pi) + \frac{n(n-1)}{2!} y_{n} (2\pi) \\
+ \left[y_{n+1} \times + \frac{n}{1!} y_{n}\right] + n^{2} y_{n} = 0
\end{cases}$$

$$x^{2} y_{n+2} + 2n x y_{n+1} + n(n-1) y_{n} + x y_{n+1} + n y_{n} - n^{2} y_{n} = 0$$

$$\Rightarrow x^{2} y_{n+2} + x y_{n+1} (2n+1) + y_{n} \left[n(n-1) + n + n^{2}\right] = 0$$

$$\Rightarrow x^{2} y_{n+2} + (2n+1) x y_{n+1} + y_{n} \left[n^{2} + (n+1)^{2}\right] = 0$$

$$\Rightarrow x^{2} y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$
Hence the proof.

Fiven that
$$y = (x + \sqrt{1+x^{2}})^{m}, \text{ Prove that } (1+x^{2}) y_{n+2} + (2n+1) x y_{n+1} + y_{n}^{2} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+2} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n+1} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1) x y_{n} + 2n^{2} y_{n} = 0$$

$$y_{n+2} + (2n+1)$$

Jeibnitz theorem. $D^{h}(uv) = u_{n} v_{+} n c_{1} u_{n-1} v_{1} + \cdots + u v_{n}$ $D^{h}(uv) = u_{n} v_{+} n c_{1} u_{n-1} v_{1} + \cdots + u v_{n}$ $D^{h}(y_{2}) (1+n^{2}) + D^{h}(y_{1}) - D^{h}(y_{2}) (2n) + D^{h}(y_{2}) (2n) +$

Let P be a given point on a given curve and a any other point on it. Let the normals at P and a intersect in N. It N tend to a definite position C as a tends to P, then C is called the centre of curvature of the curve at P.

The reciprocal of the distance CP is called the curvature of the curve at P.

The circle with its centre at c and radius CP is called the circle of curvature of the curve at P.

The distance CP is called the radius of curvature of the curve at P. The radius of curvature is usually denoted by the Greek Letter P'.

Formula for the radius of curvature:

Radius of curvature $P = \frac{\partial S}{\partial \gamma}$

Enamples!

Find 'P' for the catenary whose intrinsic equation is S=a tany.

Soln: - Given that S= a tany

Radius P = $\frac{\partial s}{\partial y} = \frac{d}{dy} (a tany)$

$$\frac{d^{3}y}{dn^{2}} = -\frac{1}{x} \left[+ \frac{1}{2} \frac{\sqrt{n}}{\sqrt{y}} \frac{dy}{dn} - \frac{\sqrt{y}}{2\sqrt{n}} \right]$$

$$= -\frac{1}{x} \left[\frac{1}{2} \sqrt{\frac{n}{y}} \frac{dy}{dn} - \frac{1}{2} \sqrt{\frac{y}{x}} \right]$$

$$= -\frac{1}{x} \left[\frac{1}{2} \sqrt{\frac{n}{y}} \frac{dy}{dn} - \frac{1}{2} \sqrt{\frac{y}{x}} \right]$$

$$= -\frac{1}{x} \left[\frac{1}{2} \sqrt{1} \left(-1 \right) - \frac{1}{2} \sqrt{1} \right]$$

$$= -\frac{1}{x} \left[\frac{1}{2} \sqrt{1} \left(-1 \right) - \frac{1}{2} \sqrt{1} \right]$$

$$= -\frac{1}{x} \left[-\frac{1}{x} - \frac{1}{x} - \frac{1}{x} \right]$$

$$= -\frac{1}{x} \left[-\frac{1}{x} - \frac{1}{x} - \frac{1}{x} \right]$$

$$= -\frac{1}{x} \left[-\frac{1}{x} - \frac{1}{x} - \frac{1}{x} - \frac{1}{x} \right]$$

$$= -\frac{1}{x} \left[-\frac{1}{x} - \frac{1}{x} - \frac{1}{x} - \frac{1}{x} \right]$$

$$= -\frac{1}{x} \left[-\frac{1}{x} - \frac{1}{x} - \frac{1}{x} - \frac{1}{x} - \frac{1}{x} \right]$$

$$= -\frac{1}{x} \left[-\frac{1}{x} - \frac{1}{x} - \frac{1}{x}$$

$$P = \frac{dy}{dx} = h \cdot (a)(T_1) - 2 \cdot (a) \cdot 2(T_2)$$

$$= h \cdot (b) - 2(-1)$$

$$= 0 + 2$$

$$\frac{dy}{dx} = 3$$

$$\Rightarrow \left(\frac{d^2y}{dx^2}\right)_{x=T_2} = -h \cdot \sin(T_2) + h \cdot \sin(T_2)$$

$$\Rightarrow \frac{d^2y}{dx^2} = -h$$

$$\therefore \text{Radius of Curvature}$$

$$P = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$$

$$= \frac{\left(1 + \left(2\right)^2\right)^{\frac{3}{2}}}{-h} = \frac{\left(1 + h\right)^{\frac{3}{2}}}{-h} = \frac{\left(5\right)^{\frac{3}{2}}}{-h}$$

$$P = \frac{5\sqrt{5}}{-h}$$
Omitting -ve sign, we get
$$P = \frac{5\sqrt{5}}{h}$$
Hence the proof.

Total differential Coefficients: -Problems :-1. Find du , where u=x2+y2+z2, x=et, y=etsint & z = et cost . Soln: - 1st formula (a, n, y, z given a means partial du dt = du dx + du dy + du dz differentialie differentialie U= x2+y2+z2 => $\frac{\partial u}{\partial x} = 2x / \frac{\partial u}{\partial y} = 2y \text{ and } \frac{\partial u}{\partial z} = 2z / \frac{\partial u}{\partial z}$ x=et => dx = et y=et sint => dy = et cost + sint et = et (cost+sint) z= et cost => dz = et (-sint) + et cost = et (cost-sint) : du = (2a) (et) + (2y) [et(cost+sint)]+ (2z) [et(cost-sint)] = /2/1 x 4 2/1 x dost-1+1 = 2xet + 2ety (cost+sint) + 2etz (cost-sint) = 2et [x+y (cost+sint) +> (cost-sint)] = 2et [et + et sint (cost+sint) + et cost (cost-sint) = 2 et. et [1+ sint (cost+sint) + cost (cost-sint) = 2 et [1+ sint/cost + sin2t + cost - sint/cost] $=2e^{2t}\int_{-1+1}^{1+1}=2e^{2t}$: du = 4e2t

Find
$$\frac{du}{dx}$$
, where $u = x^2 + y^2$ and $y = \frac{1-x}{x}$.

Solution

$$u = x^2 + y^2$$

$$\Rightarrow \frac{\partial u}{\partial x} = 2x \quad \text{and} \quad \frac{\partial u}{\partial y} = 2y$$

$$\forall = \frac{1+x}{x} \Rightarrow \frac{\partial y}{\partial x} = \frac{x(-1) - (1-x)(1)}{x^2}$$

$$= \frac{-x' - 1+x'}{x^2}$$

$$\therefore \frac{\partial y}{\partial x} = (-\frac{1}{x^2})$$
i.e., $\frac{\partial u}{\partial x} = (2x) + (2y)(-\frac{1}{x^2})$

$$= 2x - \frac{2(1-x)}{x^2} = 2x^4 - 2 + 2x$$

$$\frac{\partial u}{\partial x} = \frac{2(x^4 + x - 1)}{x^3}$$
3. If $x^3 + y^3 + 3any$, find $\frac{\partial y}{\partial x}$.

Solution

Let $f(x) = x^3 + y^3 + 3any$.
$$\frac{\partial f}{\partial x} = \frac{3x^2 + 3ay}{3} \quad \text{and} \quad \frac{\partial f}{\partial y} = 3y^2 + 3ax$$

$$\frac{\partial f}{\partial x} = \frac{-\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \quad \text{and} \quad (given sym.)$$

$$\frac{dy}{dx} = \frac{(3y^2 + 3ax)}{3x^2 + 3ay}$$

$$= \frac{3(y^2 + ax)}{3(x^2 + ay)}$$
ie,
$$\frac{dy}{dx} = \frac{(y^2 + ax)}{x^2 + ay}$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{x^2 + ay}$$

$$\frac{\partial u_1}{\partial x} = \frac{\partial u_1}{\partial x_1} \frac{\partial u_1}{\partial x_2}$$

$$\frac{\partial u_2}{\partial x_1} = \frac{\partial u_1}{\partial x_2} \frac{\partial u_1}{\partial x_2}$$

$$\frac{\partial u_1}{\partial x_1} = \frac{\partial u_1}{\partial x_2} \frac{\partial u_1}{\partial x_2}$$

$$\frac{\partial u_2}{\partial x_1} = \frac{\partial u_1}{\partial x_2} \frac{\partial u_1}{\partial x_2} \frac{\partial u_2}{\partial x_3}$$

$$\frac{\partial u_2}{\partial x_1} = \frac{\partial u_2}{\partial x_2} \frac{\partial u_2}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial u_3}{\partial x_1} = \frac{\partial u_3}{\partial x_2} \frac{\partial u_3}{\partial x_3}$$

$$\frac{\partial(x,y)}{\partial(x,0)} = \begin{vmatrix} c\omega_1 \theta & -r\sin \theta \\ \sin \theta & r\cos \theta \end{vmatrix}$$

$$= r(\omega^1 \theta - (-r\sin^2 \theta))$$

$$= r(\cos^2 \theta + r\sin^2 \theta)$$

$$= r(\cos^2 \theta + r\sin^2 \theta) = r(1)$$

$$\frac{\partial(x,y)}{\partial(x,\theta)} = r$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial z}$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial z}$$

$$= -\frac{1}{r^2} \left[\frac{(-r^2)}{r^2} - (r^2) - (r^$$

3.
$$3 = u(34)$$
 and $y = v(14u)$, find $\frac{3(u,y)}{3(u,v)}$

Solo:

$$\frac{3(0,y)}{3(u,v)} = \begin{vmatrix} \frac{3u}{3u} & \frac{3u}{3v} \\ \frac{3u}{3u} & \frac{3v}{3v} \end{vmatrix} = \begin{vmatrix} 14v & u \\ v & 14u \end{vmatrix}$$

$$= (14v)(14u) - uv = 1 + u + v + v + v + uv$$

$$\frac{3(0,y)}{3(0,y)} = \frac{3u}{3v} \frac{3v}{3y} = \frac{1}{2u^2} \frac{3v}{x}$$

$$= \left(\frac{3^2}{2u^2}\right) \left(\frac{y}{x}\right) - \left(\frac{y}{y}\right) \left(\frac{n^2y^2}{2u^2}\right)$$

$$= \left(\frac{y^2}{2u^2}\right) - \frac{y}{2u^2}$$

$$= \frac{y^2}{2u^2} - \frac{y(2x^2y^2)}{2u^2} = \frac{y^2}{2u^2} - \frac{y^2}{2u^2}$$

$$= \frac{y^2}{2u^2} - \frac{y}{2u^2}$$

$$= \frac{y^2}{2u^2}$$

$$= \frac{y^2}{2u^2}$$

$$= \frac{y^2}{2u^2}$$

$$= \frac{y^2}{2u^2}$$

$$= \frac{y^2}{2u^2}$$

$$= \frac{y^2}{2u^2}$$

$$= \frac{y^2}{2u^2$$

$$\int \frac{3\pi + 3}{3^{2} + 3\pi + 1} d\pi = \log (\pi^{2} + 3\pi + 1) + 2 \int \frac{d\pi}{\pi^{2} + 3\pi + \frac{1}{2} + 1 - \frac{1}{2}}$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \int \frac{d\pi}{(2\pi + \frac{1}{2})^{2} + \frac{3\pi}{2}}$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \int \frac{d\pi}{(2\pi + \frac{1}{2})^{2} + \frac{3\pi}{2}}$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{1}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + \frac{1}{2}}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \frac{2\pi + 3}{3} d\pi = \log (\pi^{2} + 3\pi + 1) + \frac{1}{\sqrt{3}} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \frac{2\pi + 3}{3} d\pi = \log (\pi^{2} + 3\pi + 1) + \frac{1}{\sqrt{3}} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \frac{2\pi + 3}{3} d\pi = \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \frac{2\pi + 3}{3} d\pi = \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{2} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{3} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{3} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{3} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \frac{1}{3} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right)$$

$$= \log (\pi^{2} + 3\pi + 1) + 2 \frac{2}{\sqrt{3}} \sin^{-1} \left(\frac{2\pi + 1}{\pi^{2} + \frac{1}{2}}\right$$

$$\int_{2\pi/3}^{3\pi+1} dn = \frac{3}{4} \log (2\pi^{2}+\pi+6) + \frac{1}{8} \int_{2\pi/3}^{2\pi/3} \frac{d\pi}{2\pi^{2}+3}$$

$$= \frac{3}{4} \log (2\pi^{2}+\pi+6) + \frac{1}{8} \int$$

Type: 2
$$\int \frac{P_1+g}{\sqrt{\alpha_1^2+\beta_1+c}} dx$$

Main formulas:

1 $\int \frac{dx}{\sqrt{\sigma^2-\sigma^2}} = \sin^{\frac{1}{2}}(\frac{n}{a})$

2 $\int \frac{dx}{\sqrt{\sigma^2-\sigma^2}} = \sinh^{\frac{1}{2}}(\frac{n}{a})$

3. $\int \frac{dx}{\sqrt{\sigma^2-\sigma^2}} = \cosh^{\frac{1}{2}}(\frac{n}{a})$

Problem!:

1. Evaluate: $\int \frac{x}{\sqrt{x^2+n+1}} dx \to 0$

Solar: $x = A \frac{d}{dx}(x^2+n+1) + B$
 $x = A(2n+1) + B \to 0$

Put $x = -\frac{1}{2}$, we get $\int \frac{1}{2}$ for $\int \frac{1}{2}$ for $\int \frac{1}{2}$ for $\int \frac{1}{2}$
 $\int \frac{x}{\sqrt{x^2+n+1}} dx = \int \frac{1}{2} \frac{(2n+1)-\frac{1}{2}}{\sqrt{x^2+n+1}} dx$
 $\int \frac{x}{\sqrt{x^2+n+1}} dx = \int \frac{1}{2} \frac{(2n+1)-\frac{1}{2}}{\sqrt{x^2+n+1}} dx$
 $\int \frac{x}{\sqrt{x^2+n+1}} dx = \frac{1}{2} \int \frac{2x+1}{\sqrt{x^2+n+1}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{x^2+n+1}} dx$
 $\int \frac{x}{\sqrt{x^2+n+1}} dx = \frac{1}{2} \int \frac{2x+1}{\sqrt{x^2+n+1}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{x^2+n+1}} dx$
 $\int \frac{x}{\sqrt{x^2+n+1}} dx = \frac{1}{2} \int \frac{2x+1}{\sqrt{x^2+n+1}} dx$
 $\int \frac{x}{\sqrt{x^2+n+1}} dx = \frac{1}{2} \int \frac{x}{\sqrt{x^2+n+1}} dx$
 $\int \frac{x}{\sqrt{x$

$$\int \frac{\sqrt{x^{2}+x+1}}{\sqrt{x^{2}+x+1}} dx = \frac{1}{3} - \frac{1}{2} \int \frac{dx}{\sqrt{(x+\frac{1}{2})^{2}+(\frac{15}{3})^{2}}} \frac{dx}{\sqrt{\frac{x^{2}+x+1}{2^{2}+x+1}}} = \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+x+1}} \frac{dx}{\sqrt{x^{2}+x+1}}$$

Type: 3
$$\int \frac{dx}{a+b \cos x}$$
 and Type: h $\int \frac{dx}{a+b \sin x}$

Problems:

Evaluate: $\int \frac{dx}{4+5 \cos x}$

Silv: put $k = kan^{3}/k$

$$\frac{dt}{dx} = \frac{1}{2} \sec^{2} \frac{n}{2}$$

$$dt = \frac{1}{2} \sec^{2} \frac{n}{2} dx$$

$$dt = \frac{1}{2} (1+kan^{3} \frac{n}{2}) dx$$

$$dt = \frac{1}{2} (1+kan^{3} \frac{n}{2}) dx$$

$$dt = \frac{1}{4} (1+k^{2}) dx$$

$$\Rightarrow \int \frac{dx}{h+5 \cos x} = \int \frac{2dt}{h+1} \frac{1}{h+1} \frac{1}{h+1$$

Evaluate:
$$\int \frac{dx}{3 \sin x + 4 \cos x}$$

Solving

put $t = \tan^{3} \frac{1}{2}$
 $\frac{dt}{dx} = \frac{1}{2} \cdot (1 + \tan^{2} \frac{1}{2})$
 $\frac{dt}{dx} = \frac{1}{2} \cdot (1 + \tan^{2} \frac{1}{2})$
 $\frac{dt}{dx} = \frac{1}{2} \cdot (1 + \tan^{2} \frac{1}{2})$
 $\frac{dt}{dx} = \frac{1}{2} \cdot (1 + t^{2})$
 $\frac{dt}{dx} = \frac{1}{2} \cdot (1 + t^{2})$
 $\frac{dx}{dx} = \frac{1}{2} \cdot (1 + t^{2})$
 $\frac{dx}{dx} = \frac{1 + \tan^{2} \frac{1}{2}}{(1 + t^{2})^{2}}$
 $\frac{dx}{dx} = \frac{1 + \tan^{2} \frac{1}{2}}$

$$\int_{1+3\sin n + 1+\cos n}^{\frac{1}{2}} dx = \frac{\sqrt{3}}{\sqrt{3}\sqrt{3} \cdot 2\sqrt{2}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot (1 + 1)} \right)$$

$$= \frac{1}{2\sqrt{3}\sqrt{3}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{6} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{6} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{6} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{3}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 - \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{6}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 + \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{3}} \log \left(\frac{2\sqrt{3} + \sqrt{3} \cdot 1 + \sqrt{3}}{2\sqrt{3} - \sqrt{3} \cdot 1 + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{3}} \log \left(\frac{2\sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{3}} \log \left(\frac{2\sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt{3}} \log \left(\frac{2\sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3}} \right)$$

$$= \frac{1}{2\sqrt$$

$$\int \frac{dx}{(n+1)\sqrt{x^{2}+n+1}} = -\int \frac{dt}{\sqrt{(t^{2}-t^{2}+t^{2}+1)+(t^{2}+t^{2}+1)}}$$

$$= -\int \frac{dt}{\sqrt{(t^{2}-t^{2})^{2}+t^{2}+1}} = -\int \frac{dt}{\sqrt{(t^{2}-t^{2})^{2}+(t^{2}-t^{2}+1)}}$$

$$= -\int \frac{dt}{\sqrt{(t^{2}-t^{2})^{2}+t^{2}+1}} = -\int \frac{dt}{\sqrt{(t^{2}-t^{2})^{2}+(t^{2}-t^{2}+1)}}$$

$$= -\int \frac{dx}{\sqrt{(t^{2}-t^{2}+t^{2}+1)}} = -\int \frac{dx}{\sqrt{(t^{2}-t^{2}+t^{2}+1)}}$$

$$= -\int \frac{dx}{\sqrt{(t^{2}-t^{2}+t^{2}+1)}}$$

$$= -\int \frac{dx}{\sqrt{(t^{2}-t^{2}+t^{2}+1)}} = -\int \frac{dx}{\sqrt{(t^{2}-t^{2}+t^{2}+1)}} = -\int \frac{dt}{\sqrt{t^{2}-t^{2}+t^{2}+1}} = -\int \frac{dt}{\sqrt{t$$

$$\int \sqrt{a^{2}+x^{2}} \cdot dx = \frac{a^{2}}{2} \left[6 + \frac{\sin h_{26}}{2} \right]$$

$$= \frac{a^{2}}{2} \cdot 8 + \frac{a^{2}}{2} \left(\frac{\sinh h_{26}}{2} \right)$$

$$= \frac{a^{2}}{2} \cdot 8 + \frac{a^{2}}{2} \left(\frac{\sinh h_{26}}{2} \right)$$

$$= \frac{a^{2}}{2} \cdot 6 + \frac{a^{2}}{2} \cdot \sinh h_{26} \cdot \cosh h_{26}$$

$$= \frac{a^{2}}{2} \cdot \sinh^{1} \binom{n}{4} + \frac{a^{2}}{2} \binom{n}{4} \right) \sqrt{1 + \frac{n^{2}}{n^{2}}}$$

$$= \frac{a^{2}}{2} \cdot \sinh^{1} \binom{n}{4} + \frac{a^{2}}{2} \binom{n}{4} \right) \sqrt{\frac{n^{2}+n^{2}}{n^{2}}}$$

$$= \frac{a^{2}}{2} \cdot \sinh^{1} \binom{n}{4} + \frac{n}{2} \sqrt{\frac{n^{2}+n^{2}}{n^{2}}}$$

$$= \sqrt{n^{2} \cdot \sinh^{2} n}$$

$$= \sqrt{n$$

$$\int \sqrt{a^{2}-a^{2}} \, dn = \frac{a^{2}}{2} \left(\frac{n}{a}\right) \left(\sqrt{\frac{a^{2}-1}{a^{2}-1}}\right) - \frac{a^{2}}{2} \cosh^{-1}(\frac{n}{a})$$

$$= \frac{a^{2}}{a^{2}} \frac{n}{a^{2}} \sqrt{x^{2}-a^{2}} - \frac{a^{2}}{2} \cosh^{-1}(\frac{n}{a})$$
ie,
$$\int \sqrt{x^{2}-a^{2}} \, dn = \frac{n}{2} \sqrt{x^{2}-a^{2}} - \frac{a^{2}}{2} \cosh^{-1}(\frac{n}{a})$$
ie,
$$\int \sqrt{x^{2}-a^{2}} \, dn = \frac{n}{2} \sqrt{x^{2}-a^{2}} - \frac{a^{2}}{2} \cosh^{-1}(\frac{n}{a})$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10+1-1}$$

$$= \int \sqrt{(n+1)^{2}+3} \, dn$$

$$= \int \sqrt{(n+1)^{2}+3^{2}}$$

$$= \int \sqrt{(n+1)^{2}+3^{2}}$$

$$= \int \sqrt{x^{2}+2n+10} \, dn = \frac{3^{2}}{2} \sinh^{-1}(\frac{n+1}{3}) + \frac{n+1}{2} \sqrt{x^{2}+2n+10}$$

$$\int \sqrt{x^{2}+2n+10} \, dn = \frac{3^{2}}{2} \sinh^{-1}(\frac{n+1}{3}) + \frac{n+1}{2} \sqrt{x^{2}+2n+10}$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \frac{3}{2} \sinh^{-1}(\frac{n+1}{3}) + \frac{n+1}{2} \sqrt{x^{2}+2n+10}$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \, dn = \int \sqrt{x^{2}+2n+10} \, dn$$

$$= \sum \sqrt{x^{2}+2n+10} \,$$

$$\int \sqrt{1+x_{1}-2x^{2}} \, dx = \sqrt{2} \int \sqrt{(-x_{1}^{2}+y_{2}-y_{1}^{2})+(y_{2}^{2}+y_{2}^{2})}$$

$$= \sqrt{2} \int \sqrt{-(x_{1}^{2}-y_{2}^{2}+y_{1}^{2})+(\frac{g+1}{1b})}$$

$$= \sqrt{2} \int \sqrt{-(x_{1}-y_{1}^{2})^{2}+(\frac{g+1}{1b})}$$

$$= \sqrt{2} \int \sqrt{-(x_{1}-y_{1}^{2})^{2}+(\frac{g+1}{1b})}$$

$$= \sqrt{2} \int \sqrt{-(x_{1}-y_{1}^{2})^{2}+(\frac{g+1}{1b})}$$

$$= \sqrt{2} \int \sqrt{(x_{1}-y_{2}^{2})^{2}+(\frac{g+1}{1b})^{2}}$$

$$= \sqrt{2} \int \sqrt{(x_{1}-y_{1}^{2})^{2}+(\frac{g+1}{1b})^{2}}$$

$$= \sqrt{2} \int \sqrt{(x_{1}-y_{1}^{2})^{2}+(\frac{g+1}{1b})^{2}} dx = \sqrt{2} \int \sqrt{(x_{1}-y_{1}^{2})^{2}+(\frac{g+1}{1b})^{2}} dx$$

$$= \sqrt{2} \int \sqrt{\frac{g}{32}} \int \sin^{-1}\left(\frac{h_{1}-1}{2}\right) + \frac{h_{1}-1}{8} \int \sqrt{1+x_{1}-2x_{1}^{2}} dx$$

$$= \sqrt{2} \int \sqrt{\frac{g}{2} x_{1}^{2}} \int \sin^{-1}\left(\frac{h_{1}-1}{3}\right) + \frac{h_{1}-1}{8} \int \sqrt{1+x_{1}-2x_{1}^{2}} dx$$

$$= \sqrt{2} \int \sqrt{\frac{g}{2} x_{1}^{2}} \int \sin^{-1}\left(\frac{h_{1}-1}{3}\right) + \frac{h_{1}-1}{8} \int \sqrt{1+x_{1}-2x_{1}^{2}} dx$$

$$= \sqrt{2} \int \sqrt{\frac{g}{2} x_{1}^{2}} \int \sin^{-1}\left(\frac{h_{1}-1}{3}\right) + \frac{h_{1}-1}{8} \int \sqrt{1+x_{1}-2x_{1}^{2}} dx$$

$$= \sqrt{2} \int \sqrt{\frac{g}{2} x_{1}^{2}} \int \sqrt{\frac{h_{1}-1}{3}} dx + \frac{h_{1}-1}{8} \int \sqrt{1+x_{1}-2x_{1}^{2}} dx$$

$$= \sqrt{2} \int \sqrt{\frac{g}{2} x_{1}^{2}} \int \sqrt{\frac{h_{1}-1}{3}} dx + \frac{h_{1}-1}{8} \int \sqrt{1+x_{1}-2x_{1}^{2}} dx$$

$$= \sqrt{2} \int \sqrt{\frac{g}{2} x_{1}^{2}} \int \sqrt{\frac{h_{1}-1}{3}} dx + \frac{h_{1}-1}{8} \int \sqrt{1+x_{1}-2x_{1}^{2}} dx + \frac{h_{1}-1}{$$

Calculus and Fourier Series Properties of definite Integrals: (X) 2 marks 1. Jetanda = - Jetanda 2. $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$ 3. I font da = 2 Ja font da, if font is an even function of a 4. I tanda = 0, if fran is odd function of a. 5. If (n) da = I of (a-a) da. This result is very important (useful in evaluating many integrals). b. Stranda = Sfigidy.

Problems: 1. Prove that J'sin'n dn = J'cos'n dn proof! Let fin = sin a, Here a= T/2 in f (a-x) = Sin (7/2-x) = Co) 2

ie., 52 sin's dn = 52 sin' (2 - 21) dn

=> Jusionada = Jusionada Hence the proof

(: Sin (90-0)= cosa

2. Preve that
$$\int_{0}^{3} \frac{(\sin n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} dx = \frac{\pi}{4}$$
.

Direction of $\int_{0}^{3} \frac{(\sin n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}}} dx = \frac{\pi}{4}$.

$$\int_{0}^{3} (\cos n) + (\cos n)^{\frac{3}{2}} + (\cos n)^{\frac{3}{2}} dx = \frac{(\cos n)^{\frac{3}{2}}}{(\cos n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = \frac{(\cos n)^{\frac{3}{2}}}{(\cos n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

Also, $I = \int_{0}^{3} \frac{(\cos n)^{\frac{3}{2}}}{(\cos n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$

$$I = \int_{0}^{3} \frac{(\cos n)^{\frac{3}{2}}}{(\cos n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

$$I = \int_{0}^{3} \frac{(\cos n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

$$I = \int_{0}^{3} \frac{(\cos n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

$$I = \int_{0}^{3} \frac{(\sin n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

$$I = \int_{0}^{3} \frac{(\sin n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

$$I = \int_{0}^{3} \frac{(\sin n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

$$I = \int_{0}^{3} \frac{(\sin n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

$$I = \int_{0}^{3} \frac{(\sin n)^{\frac{3}{2}}}{(\sin n)^{\frac{3}{2}}} + (\cos n)^{\frac{3}{2}} dx = 0$$

Hence the preed.

Prove that
$$\int_{-\infty}^{\infty} \log (1+\lambda \cos \theta) d\theta = \frac{\pi}{8} \log 3$$
.

In the of $(0) = \log (1+\lambda \cos \theta)$, here $a = \frac{\pi}{4}$.

If $(a-6) = \log (1+\lambda \cos \theta)$, here $a = \frac{\pi}{4}$.

If $(a-6) = \log (1+\lambda \cos \theta)$, here $a = \frac{\pi}{4}$.

If $(a-6) = \log (1+\lambda \cos \theta)$.

If $(a-6$

Evaluate:
$$\int_{0}^{\sqrt{2}} \log \sin x \, dx$$

Soln:

Let $T = \int_{0}^{\sqrt{2}} \log \sin x \, dx \to 0$

Let $f(x) = \log \sin x$, Here $\alpha = \sqrt{3}$
 $\therefore f(\alpha - x) = \log (\cos x)$
 $\therefore T = \int_{0}^{\sqrt{2}} \log \cos x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$
 $0 + (2) = \log x \, dx \to 0$

(3)
$$\Rightarrow 2T = T - \int_{0}^{T/2} \log_{2} dn$$
 $2T - T = -\log_{2} \int_{0}^{T/2} dn$
 $T = \log_{2} \int_{0}^{T/2} (\pi)^{\frac{1}{2}}$

ie., $\int_{0}^{T/2} \log_{2} \sin_{2} dn = \frac{T}{2} \log_{2} (\frac{1}{2})$

Hemo Work:

Prove that $\int_{0}^{T/2} \frac{\sin_{2} dn}{\sinh_{2} (1 + \log_{2} n)} dn = \frac{\pi}{4}$.

The gration by Parts

1. Evaluating $\int_{0}^{T/2} x e^{2n} dx$

Soln:

Judy = $uy - \int_{0}^{T/2} v dx$
 $v = e^{x}$
 $\int_{0}^{T/2} r e^{x} dn = x e^{x} - \int_{0}^{x} e^{x} dx$

Evaluate: $\int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = x e^{x} - \int_{0}^{x} e^{x} dn$

Evaluate: $\int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$

Soln:

 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn = \int_{0}^{T/2} r e^{x} dn$
 $\int_{0}^{T/2} r e^{x} dn$

$$T_{n} = ce_{n}^{n-1} x \sin x + (n-1) \int f_{n}^{2} x \cos^{n-2} x dx$$

$$= ce_{n}^{n-1} x \sin x + (n-1) \int f_{n}^{2} \cos^{n-2} x dx$$

$$= ce_{n}^{n-1} x \sin x + (n-1) \int (ce_{n}^{n-2} x - ce_{n}^{n} x) dx$$

$$= ce_{n}^{n-1} x \sin x + (n-1) \int (ce_{n}^{n-2} x - ce_{n}^{n} x) dx$$

$$= ce_{n}^{n-1} x \sin x + (n-1) \int (ce_{n}^{n-2} x - ce_{n}^{n} x) dx$$

$$T_{n} = ce_{n}^{n-1} x \sin x + (n-1) \int (ce_{n}^{n-2} x - ce_{n}^{n} x) dx$$

$$T_{n} = ce_{n}^{n-1} x \sin x + (n-1) \int (ce_{n}^{n-2} x - ce_{n}^{n} x) dx$$

$$T_{n} + (n-1)T_{n} = ce_{n}^{n-1} x \sin x + (n-1)T_{n-2}$$

$$T_{n} + nT_{n} - Y_{n} = ce_{n}^{n-1} x \sin x + (n-1)T_{n-2}$$

$$T_{n} = \int_{0}^{y_{2}} ce_{n}^{n} x dx$$

$$= \left(ce_{n}^{n-1} x \sin x \right)_{0}^{y_{2}} + \left(\frac{n-1}{n} \right) T_{n-2}$$

$$= \int_{0}^{y_{2}} ce_{n}^{n} x dx$$

$$= \left(ce_{n}^{n-1} x \sin x \right)_{0}^{y_{2}} + \left(\frac{n-1}{n} \right) T_{n-2}$$

$$= \int_{0}^{y_{2}} ce_{n}^{n} x dx$$

$$= \int_{0}^{y_{2}} ce_{n}^{n} x dx$$

$$= \left(ce_{n}^{n-1} x \sin x \right)_{0}^{y_{2}} + \left(\frac{n-1}{n} \right) T_{n-2}$$

$$= \int_{0}^{y_{2}} ce_{n}^{n} x dx$$

$$= \int_{0}^{y_{2}} ce_{n}^$$

2 Find
$$\int_{0}^{\infty} \sin^{4}x \cos^{4}x dx$$

Solve $\int_{0}^{\infty} \sin^{4}x \cos^{4}x dx = \frac{n-1}{m+1} \frac{n-3}{m+1} \cdot \frac{n-3}{m} \cdot \frac{1}{m} \cdot \frac{m}{m} \cdot \frac{1}{m-2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$

$$\int_{0}^{\infty} \sin^{4}x \cos^{4}x dx = \frac{n-1}{64h} \cdot \frac{n-3}{64h-2} \cdot \frac{6-1}{6} \cdot \frac{6-3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$= \frac{3\pi}{16} \cdot \frac{1}{8} \cdot \frac{1}{8} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$= \frac{3\pi}{512}$$

ie $\int_{0}^{\infty} \sin^{6}x \cot^{4}x dx = \frac{3\pi}{512}$

$$\int_{0}^{\infty} \cos^{6}x dx = \frac{n-1}{h} \cdot \frac{n-3}{h-2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$\int_{0}^{\infty} \cos^{6}x dx = \frac{n-1}{h} \cdot \frac{n-3}{h-2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$= \frac{3\pi}{8} \cdot \frac{\pi}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{4}$$

$$= \frac{3\pi}{8} \cdot \frac{\pi}{8} \cdot \frac{\pi$$