CORE COURSE IV
GRAPH THEORY
Objectives

1. To give a rigorous study of the basic concepts of Graph Theory.
2. To study the applications of Graph Theory in other disciplines.

Note: Theorems, Propositions and results which are starred are to be omitted.
Unit 1 Basic Results

Basic Concepts - Subgraphs - Degrees of Vertices - Paths and Connectedness-
Operations on Graphs - Directed Graphs: Basic Concepts - Tournaments.

Unit 1I Connectivity

Vertex Cuts and Edge Cuts - Connectivity and Edge - Connectivity, Trees:Definitions,
Characterization and Simple Properties - Counting the Number of Spanning Trees -
Cayley’s Formula,

Unit 111 Independent Sets and Matchings

Vertex Independent Sets and Vertex Coverings - Edge Independent Sets -Matchings
and Factors - Eulerian Graphs - Hamiltonian Graphs,

Unit 1V Graph Colourings

Vertex Colouring - Critical Graphs - Triangle - Free Graphs - Edge Colourings of
Graphs - Chromatic Polynomials,

Unit V Planarity

Planar and Nonplanar Graphs - Euler Formula and its Consequences - K5 and K3,3
are Nonplanar Graphs - Dual of a Plane Graph - The Four-Colour Theorem and the
Heawood Five-Colour Theorem-Kuratowski’s Theorem.

Textbook

1. R. Balakrishnan, K. Ranganathan, A Textboolt of Graph Theory, Springer
International Edition, New Delhi, 2008.

UNIT 1 Chapter 1 & 1I; 1.1 t0 1.4, 1.7, 2.1,2.2

UNIT 11 Chapter III & IV: 3.1, 3.2, 4.1, 4.3 to 4.4

UNIT III Chapter V & VI: 5.1 to 5.4, 6.1, 6.2

UNIT IV Chapter VII: 7.1 to 7.4, 7.7

UNIT V Chapter VIII: 8.1 to 8.6
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1. J.A. Bondy, U.8.R. Murty, Graph Theory with Applications, Mac MilanPress Lid.,
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2. Gary Chartrand, Linda Lesniak, Ping Zhang, Graphs and Digraph,CRC press,2010.
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Chapter 1
Basic Results

1.1 Introduction

Graphs serve as mathematical models to analyze many concrete real-world
problems successfully. Certain problems in physics, chemistry, communication
science, computer technology, genetics, psychology, sociology, and linguistics can
be formulated as problems in graph theory. Also, many branches of mathematics,
such as group theory, matrix theory, probability, and topology, have close
connections with graph theory.

Some puzzles and several problems of a practical nature have been instrumental
in the development of various topics in graph theory. The famous Konigsberg
bridge problem has been the inspiration for the development of Eulerian graph
theory. The challenging Hamiltonian graph theory has been developed from the
“Around the World” game of Sir William Hamilton. The theory of acyclic graphs
was developed for solving problems of electrical networks, and the study of “trees”™
was developed for enumerating isomers of organic compounds. The well-known
four-color problem formed the very basis for the development of planarity in graph
theory and combinatorial topology. Problems of linear programming and operations
research (such as maritime traffic problems) can be tackled by the theory of flows in
networks. Kirkman's schoolgirl problem and scheduling problems are examples of
problems that can be solved by graph colorings. The study of simplicial complexes
can be associated with the study of graph theory. Many more such problems can be
added to this list.

1.2 Basic Concepts

Consider a road network of a town consisting of streets and street intersections.
Figure 1.1a represents the road network of a city. Figure 1.1b denotes the corre-
sponding graph of this network, where the street intersections are represented by

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 1
Universitext, DOI 10.1007/978-1-4614-4529-6_1,
@ Springer Science+Business Media New York 2012
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2 1 Basic Results

Fig. 1.1 (a) A road network a
and (b) the graph
corresponding to the road
network in (a)
A L

points, and the street joining a pair of intersections is represented by an arc (not
necessarily a straight line). The road network in Fig. 1.1 is a typical example of a
graph in which intersections and streets are, respectively, the “vertices” and “edges”
of the graph. (Note that in the road network in Fig. 1.1a, there are two streets joining
the intersections J7 and Jg, and there is a loop street starting and ending at J5.)

We now present a formal definition of a graph.

Definition 1.2.1. A graph is an ordered triple G = (V(G), E(G), I), where
V(G) 1s a nonempty set, E(G) is a set disjoint from V(G), and I is an “incidence™
relation that associates with each element of E(G) an unordered pair of elements
(same or distinct) of V(G). Elements of V(G) are called the vertices (or nodes or
points) of G, and elements of E(G) are called the edges (or lines) of G. V(G) and
E(G) are the vertex set and edge set of G, respectively. If, for the edge ¢ of G,
Ig(e) = {u, v}, we write I5(e) = uv.

Example 1.2.2. If V(G) = {vi,v2,vi,va,v5}, E(G) = {e1,e2,€3,€4.€5,€5), and
I is given by Ig(e;)) = {vi,vs}, Ig(e2) = {va.va), Ig(es) = {vz,va}, Igleq) =
tva, vs}, Ig(es) = {va.vs}, Ig(es) = {va. va}, then (V(G), E(G), I¢) is a graph.

Diagrammatic Representation of a Graph 1.2.3. Each graph can be represented
by a diagram in the plane. In this diagram, each vertex of the graph is represented
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1.2 Basic Concepts 3

Fig. 1.2 Graph
(V(G), E(G). I) described
in Example 1.2.2

by a point, with distinct vertices being represented by distinct points. Each edge is
represented by a simple “Jordan” arc joining two (not necessarily distinct) vertices.
The diagrammatic representation of a graph aids in visualizing many concepts
related to graphs and the systems of which they are models. In a diagrammatic
representation of a graph, it is possible that two edges intersect at a point that is not
necessarily a vertex of the graph.

Definition 1.2.4. If Iz(e) = {u. v}, then the vertices u and v are called the end
vertices or ends of the edge e. Each edge is said to join its ends; in this case, we
say that e is incident with each one of its ends. Also, the vertices u and v are then
incident with e. A set of two or more edges of a graph G is called a set of multiple
or parallel edges if they have the same pair of distinct ends. If e is an edge with end
vertices u and v, we write ¢ = uwv. An edge for which the two ends are the same is
called a loop at the common vertex. A vertex u is a neighbor of v in G. if uv is an
edge of G, and u 7 v. The set of all neighbors of v is the open neighborhood of
v or the neighbor set of v, and is denoted by N(v); the set N[v] = N(v) U {v}is
the closed neighborhood of v in G. When G needs to be made explicit, these open
and closed neighborhoods are denoted by Ng(v) and Ng[v], respectively. Vertices
u and v are adjacent to each other in G if and only if there is an edge of G with u
and v as its ends. Two distinct edges e and [ are said to be adjacent if and only if
they have a common end vertex. A graph 1s simple 1f it has no loops and no multiple
edges. Thus, for a simple graph G, the incidence function / is one-to-one. Hence,
an edge of a simple graph is identified with the pair of its ends. A simple graph
therefore may be considered as an ordered pair (V(G), E(G)), where V(G) is a
nonempty set and £(G) is a set of unordered pairs of elements of V(G ) (each edge
of the graph being identified with the pair of its ends).

Example 1.2.5. In the graph of Fig. 1.2, edge ¢3 = vavy4, edges ¢4 and ¢5 form
multiple edges, e is a loop at v3, N(v2) = {vi.va,vs), N(vz) = {w2}. N[wn] =
{va, v3,v4,vs}, and N[va2] = N(v2) U {v2}. Further, v, and v5 are adjacent vertices
and e¢3 and e, are adjacent edges.

Definition 1.2.6. A graph is called finite if both V(G ) and E(G) are finite. A graph
that 1s not fimte i1s called an infinite graph. Unless otherwise stated, all graphs
considered in this text are finite. Throughout this book, we denote by n(G) and
m(G) the number of vertices and edges of the graph G, respectively. The number
n(G) is called the order of G and m(G) is the size of G. When explicit reference to
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4 1 Basic Results

Fig. 1.3 A graph diagram; ¢,
is a loop and {ea, e3} is a set
of multiple edges

Fig. 1.4 A simple graph

Fig. 1.5 A labeled graph G
and an unlabeled graph H

the graph G is not needed, V(G), E(G), n(G), and m(G) will be denoted simply
by V. E. n, and m, respectively.

Figure 1.3 is a graph with loops and multiple edges, while Fig. 1.4 represents a

simple graph.

Remark 1.2.7. The representation of graphs on other surfaces such as a sphere, a
torus, or a Mobius band could also be considered. Often a diagram of a graph is
identified with the graph itself.

Definition 1.2.8. A graph is said to be labeled if its n vertices are distinguished
from one another by labels such as vy, vs, ..., v, (see Fig. 1.5).

Note that there are three different labeled simple graphs on three vertices each
having two edges, whereas there is only one unlabeled simple graph of the same
order and size (see Fig. 1.6).
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1.2 Basic Concepts 5

Uy Uy U
Uy Uy Uy Uy Uy vy

Fig. 1.6 Labeled and unlabeled simple graphs on three vertices

(15 Uy

iy ‘ iy

P “~J L H
A

vl

il i, Uy t g

Fig. 1.7 Isomorphic graphs

Isomorphism of Graphs 1.2.9. A graph isomorphism, which we now define, is a
concept similar to isomorphism in algebraic structures. Let G = (V(G), E(G), Ig)
and H = (V(H), E(H), I'y) be two graphs. A graph isomorphism from G to H
is a pair (¢, €), where ¢ : V(G) — V(H)and 6 : E(G) — E(H) are bijections
with the property that I;(e) = {u, v} if and only if I'y(6(e)) = {d(u).p(v)}. If
(¢, 8) is a graph isomorphism, the pair of inverse mappings (¢—',87") is also a
graph isomorphism. Note that the bijection ¢ satisfies the condition that u and v
are end vertices of an edge e of G if and only if ¢(ut) and ¢(v) are end vertices of
the edge 6(e) in H. It is clear that isomorphism is an equivalence relation on the
set of all graphs. Isomorphism between graphs is denoted by the symbol == (as in
algebraic structures).

Simple Graphs and Isomorphisms 1.2.10. If graphs G and H are simple, any
bijection ¢ : V(G) — V(H) such that u and v are adjacent in G if and only if
¢(u) and ¢(v) are adjacent in H induces a bijection # : E(G) — E(H) satisfying
the condition that I (e) = {u, v} if and only if Iy (6(e)) = {¢d(u), ¢(v)}. Hence,
¢ itself is referred to as an isomorphism in the case of simple graphs G and H.
Thus, if G and H are simple graphs, an isomorphism from G to H is a bijection
¢ : V(G) — V(H) such that u and v are adjacent in G if and only if ¢p(v) and ¢(v)
are adjacent in H. Figure 1.7 exhibits two isomorphic graphs P and H. where P 1s
the well-known Petersen graph. We observe that P is a simple graph.

Exercise 2.1. Let G and H be simple graphs and let ¢ : V(G) — V(H) be a
bijection such that uv € E(G) implies that ¢ (u)¢p(v) € E(H). Show by means of
an example that ¢ need not be an isomorphism from G to H.

Scanned with CamScanner



O 1 Basic Results

Ky Ky K4 Ky Ky

Fig. 1.8 Some complete graphs

Fig. 1.9 A totally [ ]
disconnected graph on five
vertices
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Y

Y X Y X Y
A bipartite graph The graph Ky 4 The star graph K 5

g € N

ddeosd

-

Fig. 1.10 Bipartite graphs

Definition 1.2.11. A simple graph ( is said to be complete if every pair of distinct
vertices of G are adjacent in G. Any two complete graphs each on a set of n vertices
are 1somorphic; each such graph is denoted by K,, (Fig. 1.8).

A simple graph with n vertices can have at most (}) = 5‘-’-'5_—11 edges. The

complete graph K, has the maximum number of edges among all simple graphs
with n vertices. At the other extreme, a graph may possess no edge at all. Such a
graph is called a rotally disconnected graph (see Fig. 1.9). Thus, for a simple graph
G with n vertices, we have 0 < m(G) < "[”2—_”

Definition 1.2.12. A graph is trivial if its vertex set is a singleton and it contains
no edges. A graph is bipartite if its vertex set can be partitioned into two nonempty
subsets X and Y such that each edge of G has one end in X and the other in Y.
The pair (X, Y') is called a bipartition of the bipartite graph. The bipartite graph G
with bipartition (X, Y) is denoted by G(X,Y). A simple bipartite graph G(X,Y)
is complete if each vertex of X is adjacent to all the vertices of Y. If G(X.Y) is
complete with | X| = p and |Y| = g, then G(X. Y) is denoted by K, ;. A complete
bipartite graph of the form K , is called a star (see Fig. 1.10).
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Fig. 1.11 Two simple graphs and their complements

Fig. 1.12 Self-
complementary graphs

Definition 1.2.13. Let G be a simple graph. Then the complement G° of G is
= V(G) and making two vertices u and v adjacent in
G ¢ if and only if they are nonadjacent in G (see Fig. 1.11). It 1s clear that G° is also
a simple graph and that (G°)* = G

defined by taking V(G°)

iy iy
iy U
(%
iy Uy
U'd iy
s
He

If [V(G)| = n. then clearly, | E(G)| + | E(G)| = |E(K,)| = "2,

Definition 1.2.14. A simple graph G is called self-complementarvit G = G°.

For example, the graphs shown in Fig. 1.12 are self-complementary.

Exercise 2.2. Find the complement of the following simple graph:
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1.3 Subgraphs

Definition 1.3.1. A graph H is called a subgraph of G if V(H) < V(G),
E(H) < E(G). and [y 1s the restriction of /g to E(H). If H is a subgraph
of G, then G is said to be a supergraph of H. A subgraph H of a graph G is a
proper subgraph of G if either V(H) # V(G)or E(H) # E(G). (Hence, when
G is given, for any subgraph H of G, the incidence function is already determined
so that H can be specified by its vertex and edge sets.) A subgraph H of G is said
to be an induced subgraph of G if each edge of G having its ends in V(H ) is also
an edge of H. A subgraph H of G is a spanning subgraphof G if V(H) = V(G).
The induced subgraph of G with vertex set § € V(G) is called the subgraph of G
induced by S and is denoted by G[S]. Let E" be a subset of E and let § denote the
subset of ¥ consisting of all the end vertices in G of edges in E'. Then the graph
(S.E'. Ig|,,) is the subgraph of G induced by the edge set E' of G. It is denoted
by G[E’] (see Fig. 1.13). Let 4 and v be vertices of a graph G. By G + uv. we mean
the graph obtained by adding a new edge uv to G.

Definition 1.3.2. A cligue of G is a complete subgraph of G. A clique of G 1s
a maximal cligue of G if it is not properly contained in another clique of G (see
Fig. 1.13).

Definition 1.3.3. Deletion of vertices and edges in a graph: Let G be a graph, §
a proper subset of the vertex set V, and E' a subset of E. The subgraph G[V'\S]
is said to be obtained from G by the deletion of §. This subgraph is denoted by
G—S.IfS = {v}. G — § is simply denoted by G — v. The spanning subgraph of
G with the edge set E\ E' is the subgraph obtained from G by deleting the edge
subset E’. This subgraph is denoted by G — E'. Whenever E' = {e}, G — E' is

e U=

€6

s Ug

Graph & A subgraph of G

Fig. 1.13 Various subgraphs and cliques of G
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7 vg
A subgraph of G.
but not an induced subgraph of &

An induced subgraph of G

An edge-induced subgraph of ¢
induced by E'={el, e2. 3, €5, en}

U5 €g Vg U5 UG

Graph G+usug Graph G+uvsv-

Fig. 1.13 (continued)

simply denoted by G — e. Note that when a vertex is deleted from G, all the edges
incident to it are also deleted from G, whereas the deletion of an edge from G does
not affect the vertices of G (see Fig. 1.14).
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va
\
ey ty

G — {es, ¢4, €7} G — {v. vs}

Fig. 1.14 Deletion of vertices and edges from G

1.4 Degrees of Vertices

Definition 1.4.1. Let G be a graph and v € V. The number of edges incident at v
in G is called the degree (or valency) of the vertex v in G and is denoted by dg (v),
or simply d(v) when G requires no explicit reference. A loop at v is to be counted
twice in computing the degree of v. The minimum (respectively, maximum) of the
degrees of the vertices of a graph G is denoted by 4(G) or § (respectively, A(G)
or A). A graph G is called k-regular if every vertex of G has degree k. A graph is
said to be regular if it is k-regular for some nonnegative integer k. In particular, a
3-regular graph is called a cubic graph.

Definition 1.4.2. A spanning l-regular subgraph of G is called a 1-factor or a
perfect matching of G. For example, in the graph G of Fig. 1.15, each of the pairs
lab,cd} and {ad . bc} is a 1-factor of G.

Definition 1.4.3. A vertex of degree 0 is an isolated vertex of G. A vertex of degree
1 is called a pendant vertex of G, and the unique edge of G incident to such a vertex
of G is a pendant edge of G. A sequence formed by the degrees of the vertices of
G. when the vertices are taken in the same order, is called a degree sequence of G.
It is customary to give this sequence in the nonincreasing or nondecreasing order, in
which case the sequence is unique.

In the graph G of Fig. 1.16, the numbers within the parentheses indicate the
degrees of the corresponding vertices. In G, v; 1s an 1solated vertex, vg 1s a pendant
vertex, and vsvg is a pendant edge. The degree sequence of G is (0,1,2,2,4.4,5).
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Fig. 1.15 Graph with d c
1-factars

a b

Fig. 1.16 Degrees of vertices
of graph G

v-(0)

vgll)

iz

The very first theorem of graph theory was due to Leonhard Euler (1707-1783).
This theorem connects the degrees of the vertices and the number of edges of a
graph.

Theorem 1.4.4 (Euler). The sum of the degrees of the vertices of a graph is equal
to twice the number of its edges.

Proof. If e = uv is an edge of G, e is counted once while counting the degrees of
each of u and v (even when u = v). Hence, each edge contributes 2 to the sum of the
degrees of the vertices. Thus, the m edges of G contribute 2m to the degree sum.

a

Remark 1.4.5. 1fd = (d,.d-....,d,) is the degree sequence of G, then the above
theorem gives the equation » ¥_, d; = 2m, where n and m are the order and size
of G, respectively.

Corollary 1.4.6. In any graph G, the number of vertices of odd degree is even.

Proof. Let V; and V; be the subsets of vertices of G with odd and even degrees,
respectively. By Theorem 1.4.4,

2m(G) =) dg(v) =) do(v) + ) da(v).

veEV veE V] vE 2
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As 2m(G) and ) ., dg(v) are even, ) .. dg(v) is even. Since for each v €
V1. dg(v) is odd, | V| must be even. O

Exercise 4.1. Show that if G and H are isomorphic graphs, then each pair of
corresponding vertices of G and H has the same degree.

Exercise 4.2. Let (dy.d>,.... d,) be the degree sequence of a graph and r be any
positive integer. Show that ", d/ is even.

Definition 1.4.7. Graphical sequences: A sequence of nonnegative integers d =
(dy.d>, ..., d,) is called graphical if there exists a simple graph whose degree
sequence is d. Clearly, a necessary condition for d = (di.da,..., dy) to be
graphical is that Y /_, d; isevenand d; = 0,1 < i < n. These conditions,
however, are not sufficient, as Example 1.4.8 shows.

Example 1.4.8. The sequence d = (7,6,3,3,2,1,1.1) is not graphical even
though each term of d is a nonnegative integer and the sum of the terms is even.
Indeed, if d were graphical. there must exist a simple graph G with eight vertices
whose degree sequence is d. Let vg and v; be the vertices of G whose degrees are 7
and 6, respectively. Since G is simple, vq is adjacent to all the remaining vertices of
G. and vy, besides vy, should be adjacent to another five vertices. This means that in
V' — {vy, vi } there must be at least five vertices each of degree at least 2; but this is
not the case. 0

Exercise 4.3. If d = (d,,d>.....d,) is any sequence of nonnegative integers with
3", d; even, show that there exists a graph (not necessarily simple) with d as its
degree sequence.

We present a simple application whose proof just depends on the degree sequence

of a graph.

Application 1.4.9. In any group of n persons (n = 2), there are at least two with
the same number of friends.

Proof. Denote the n persons by vy, va, ..., v,. Let G be the simple graph with
vertex set V' = {vy,vs,..., v, in which v; and v; are adjacent if and only if the
corresponding persons are friends. Then the number of friends of v; is just the degree
of v; in G. Hence, to solve the problem, we must prove that there are two vertices
in G with the same degree. If this were not the case, the degrees of the vertices of
G mustbe0.,1,2,..., (n — 1) in some order. However, a vertex of degree (n — 1)
must be adjacent to all the other vertices of G, and consequently there cannot be a
vertex of degree 0 in G. This contradiction shows that the degrees of the vertices
of G cannot all be distinct, and hence at least two of them should have the same
degree. O

Exercise 4.4. Let G be a graph with n vertices and m edges. Assume that each
vertex of G is of degree either k or k + 1. Show that the number of vertices of
degree k in G is (k + 1)n — 2m.
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1.5 Paths and Connectedness 13
1.5 Paths and Connectedness

Definition 1.5.1. A walk in a graph G is an alternating sequence W : vge v esv2
... epv, of vertices and edges beginning and ending with vertices in which v; _; and
v; are the ends of ¢;; vy is the origin and v, is the terminus of W. The walk W 1s
said to join vy and v,: it is also referred to as a vy-v, walk. If the graph is simple,
a walk is determined by the sequence of its vertices. The walk is closed if vy = v,
and is open otherwise. A walk is called a frail if all the edges appearing in the walk
are distinct. It is called a path if all the vertices are distinct. Thus, a path in G is
automatically a trail in G. When writing a path, we usually omit the edges. A cvcle
is a closed trail in which the vertices are all distinct. The length of a walk is the
number of edges in it. A walk of length () consists of just a single vertex.

Example 1.5.2. In the graph of Fig. 1.17, vsejvievaesviesviervseqrg 1s a walk
but not a trail (as edge e; is repeated) vie vieaviesvoepvy is a closed walk;
Vi€ Va€e4Vaesv €7vs 1S a trail; vgegvievoeavs is a path and viejvaeqvyegvseqvy is a
cycle. Also, vgvyvavs is a path, and vyvavgvsvey is a cycle in this graph. Very often
a cycle 1s enclosed by ordinary parentheses.

Definition 1.5.3. A cycle of length & is denoted by C;. Further, P, denotes a
path on k vertices. In particular, C; is often referred to as a triangle, C4 as a
square, and Cs as a pentagon. If P = vge,vieavs ... exvi is a path, then P7! =
VE€EVE—1€k—1Vk—2 ... Vi€V is also a path and P! is called the inverse of the path
P. The subsequence v;e; 1 1v; 4 ... €;v; of P is called the v;-v; section of P.

Definition 1.5.4. Let G be a graph. Two vertices u and v of G are said to be
connected if there is a u-v path in G. The relation “connected” is an equivalence
relation on V(G). Let Vi, V;,..., V,, be the equivalence classes. The subgraphs
G[W], G[Va], ..., G[V,] are called the components of G. If @ = 1, the graph
G is connected, otherwise, the graph G is disconnected with @ = 2 components
(see Fig. 1.18).

Ug

Fig. 1.17 Graph illustrating
walks, trails, paths, and cycles
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Fig. 1.18 A graph G with
three components

GV G[Vi) Gvil

Definition 1.5.5. The components of G are clearly the maximal connected sub-
graphs of G. We denote the number of components of G by w(G). Let u and v be
two vertices of G. If u and v are in the same component of G, we define d(u,v) to
be the length of a shortest u-v path in G otherwise, we define d(u, v) to be oo. If
G is a connected graph, then d is a distance function or metric on V(G); that is,
d(u, v) satisfies the following conditions:

(1) d{u,v) = 0,and d(u,v) = 0if and only if u = v.
(i) d(u,v) = d(v,u).
(iii) d(u.v) < d(u,w) + d(w,v), for every win V(G).

Exercise 5.1. Prove that the function d defined above is indeed a metric on V().

Exercise 5.2. In the following graph, find a closed trail of length 7 that is not a
cycle:

We now give some results relating to connectedness of graphs.
Proposition 1.5.6. If G is simple and § = "5—, then G is connected.

Proof. Assume the contrary. Then G has at least two components, say G, G2. Let
vbe any vertex of G,. As § > 5= L d(v) = L. All the vertices adjacent to v in G

must belong to G. Hence, G, cnntams at least d(v]-l— L= &= Lyl = ""H vertices.
Similarly, G, contains at least “;] vertices. Therefore G has at least ”;H - "T =
n + 1 vertices, which is a contradiction. O

Exercise 5.3. Give an example of a nonsimple disconnected graph with § > %=1,

H—

Exercise 5.4. Show by means of an example that the condition § > "= for a

simple graph G need not imply that G is connected.
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1.5 Paths and Connectedness 15

Exercise 5.5. In a group of six people, prove that there must be three people who
are mutually acquainted or three people who are mutually nonacquainted.

Our next result shows that of the two graphs G and G*, at least one of them must
be connected.

Theorem 1.5.7. If a simple graph G is not connected, then G* is connected.

Proof. Let u and v be any two vertices of G° (and therefore of ). If u and v belong
to different components of (7, then obviously & and v are nonadjacent in G and so
they are adjacent in G°. Thus u and v are connected in G*. In case u and v belong to
the same component of G, take a vertex w of G not belonging to this component of
G. Then uw and vw are not edges of G and hence they are edges of G°. Then uwv
is a w-v path in G°. Thus G* is connected. O

Exercise 5.6. Show that if G is a self-complementary graph of order n, thenn = 0
or | (mod 4).

Exercise 5.7. Show that if a self-complementary graph contains a pendant vertex,
then it must have at least another pendant vertex.
The next theorem gives an upper bound on the number of edges in a simple graph.

Theorem 1.5.8. The number of edges of a simple graph of order n having
d l[.'r—m]l[u—w+l]_

components cannot excee 3

Proof. Let Gy, Ga, ..., G, be the components of a simple graph G and let n; be the

number of verticesof G;,1 < i < w.Thenm(G;) < J'ji%';u,::mdhem;ﬂ.i‘ﬂ":(G] =<

o T '—"—'-”-"-_—'1 .Sincen; = 1foreachi,l =i <= @w.nj=n—(m+... +ni_; +

nip1+ . -H‘?m) < n—w+ 1. Hence, ) ._, "'{"' D < v —("“"“F;H"f—” =

{n—w+1) rr;-H:I Zm (n ]) {n—w+1) ttl+” [{er: .i'!;:'— ] {n— rr:-l—l](!i mJ O
i = =1

Definition 1.5.9. A graph G is called locally connected if, for every vertex v of G,
the subgraph Ng(v) induced by the neighbor set of v in G is connected.

A cycle 1s odd or even depending on whether its length 1s odd or even. We now
characterize bipartite graphs.

Theorem 1.5.10. A graph is bipartite if and only if it contains no odd cycles.

Proof. Suppose that G is a bipartite graph with the bipartition (X,Y). Let C =
viepvaeavies ... vyep vy be a cycle in G. Without loss of generality, we can suppose
that vi € X. As v, is adjacent to vy, v € Y. Similarly, v; belongs to X, vy to ¥,
and so on. Thus, v; € X or ¥ according as i isodd oreven, 1 < i < k. Since
vivy isanedge of G and vy € X, v € Y. Accordingly, k is even and C is an even
cycle.

Conversely, let us suppose that G contains no odd cycles. We first assume that
G is connected. Let u be a vertex of G. Define X = {v € V|d(u,v) is even}
and Y = {v € V|d(u,v) is odd}. We will prove that (X, Y) is a bipartition of
(. To prove this we have only to show that no two vertices of X as well as no two
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) \. )

Fig. 1.19 Graph for proof of Theorem 1.5.10

vertices of Y are adjacent in G. Let v, w be two vertices of X. Then p = d(u,v)
and ¢ = d(u, w) are even. Further, as d(u,u) = 0, u € X. Let P be a u-v shortest
path of length p and Q. a u-w shortest path of length 4. (See Fig. 1.19.) Let w; be a
vertex common to P and O such that the w-v section of P and the w;-w section of
Q contain no vertices common to P and Q. Then the u-w, sections of both P and
Q have the same length.

Hence, the lengths of the w;-v section of P and the w;-w section of Q are both
even or both odd. Now if ¢ = vw is an edge of G, then the wy-v section of P
followed by the edge vw and the w-w; section of the w-u path O ! is an odd cycle
in G, contradicting the hypothesis. This contradiction proves that no two vertices of
X are adjacent in G. Similarly, no two vertices of ¥ are adjacent in G. This proves
the result when G is connected.

If G is not connected, let Gy, Ga, ..., G, be the components of G. By hypothesis,
no component of G contains an odd cycle. Hence, by the previous paragraph, each
component G;, | < i < m, is bipartite. Let (X, ¥;) be the bipartition of G;. Then
(X.Y). where X = |J/_, X; and ¥ = | Ji_, ¥}, is a bipartition of G, and G is a
bipartite graph. O

Exercise 5.8. Prove that a simple nontrivial graph G is connected if and only if for
any partition of V' into two nonempty subsets V) and V5, there is an edge joining a
vertex of 1] to a vertex of V5.

Example 1.5.11. Prove that in a connected graph G with at least three vertices, any
two longest paths have a vertex in common.

Proof. Suppose P = ujuy...u; and Q = vyv,y... v are two longest paths in G
having no vertex in common. As G is connected, there exists a u;-v, path P’ in G.
Certainly there exist vertices u, and v; of P/, 1 < r < k.1 < 5 < k such that
the u,-v; section P" of P’ has no internal vertex in common with P or Q.

Now, of the two sections u;-u, and u,-uy of P, one must have length at least %
Similarly, of the two sections vy-v; and vy-v; of @, one must have length at least
%. Let these sections be P, and (;, respectively. Then P; U P” U Q, is a path of
length at least % + 1 + % contradicting that k is the length of a longest path in G
(see Fig. 1.20). O
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Fig. 1.20 Graph for the solution to Example 1.5.11

Exercise 5.9. Prove that in a simple graph G, the union of two distinct paths joining
two distinct vertices contains a cycle.

Exercise 5.10. Show by means of an example that the union of two distinct walks
joining two distinct vertices of a simple graph G need not contain a cycle.

Exercise 5.11. If a simple connected graph G is not complete, prove that there exist
three vertices u, v, w of G such that uv and vw are edges of G, but uw is not an edge
of G.

Exercise 5.12. (see reference: [174]) Show that a simple connected graph G 1s
complete if and only if for some vertex v of G, N[v] = N[u] foreveryu € N|[v].

Exercise 5.13. A simple graph G is called highly irregular if, for eachv € V(G),
the degrees of the neighbors of v are all distinct. (For example, Py is a graph with
this property.) Prove that there exist no connected highly irregular graphs of orders
3 and 5.

Exercise 5.14. The generalized Petersen graph P(n, k) is defined by taking
V(P(n.k)) ={a;.b; :0<i<n-1}

and
E(P(n.k)) ={aiai+1, aib;i, bibi 4, 0 =i =n— 1},

where the subscripts are integers modulon,n > 5and 1 < k < L"—E'j. Prove that
if n is even and k is odd, then P(n, k) is bipartite.

Example 1.5.12. 1If G is simple and § > k, then G contains a path of length at
least k.

Proof. Let P = vgv; ... v, be a longest path in G. Then the vertices adjacent to v,
can only be from among vy, vy, ..., v,_;. Hence, the length of P =r > dg(v,) >
8 > k. O
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paragraph (i), the star at «’ in G’ is transformed by ¢! either to the star at u in
G or to the star at v in G. But as the star at v in G is mapped to the star at v in
G’ by ¢y, ¢;" should map the star at u’ in G’ to the star at u in G only. As ¢,
is 1-1, this means that dg(u) = 2. a contradiction. Therefore, dg:(1') = 1,
and so S(u) in G is mapped onto S(u’) in G'.

We now define ¢p : V(G) — V(G') by setting ¢p(u) = o’ if ¢y (S(u)) = S(u’).
Since S(u) = S(v) only whenu = v (G # K3, G' # K;), ¢ is 1-1. ¢ is also onto
since, for v/ in G’, ¢; ' (S(v')) = S(v) for some v € V(G), and by the definition of
¢, ¢(v) = V. Finally, if uv is an edge of G, then ¢, (uv) belongs to both S(u’) and
S(v'), where ¢(S(u)) = S(u') and ¢,(S(v)) = S(V'). This means that «’v' is an
edge of G'. Butu’ = ¢p(u) and v' = ¢p(v). Consequently, ¢ (u)¢(v) is an edge of G'.
If u and v are nonadjacent in G, ¢(u)¢(v) must be nonadjacent in G'. Otherwise,
¢ (u)d(v) belongs to both S(¢(u)) and §(¢(v)), and hence gb,_l(l;i&{u)q’){\r}] = uv €
E(G), a contradiction. Thus, G and G’ are isomorphic under ¢. O

Definition 1.7.5. A graph H is called a forbidden subgraph for a property P of
graphs if it satisfies the following condition: If a graph G has property P, then G
cannot contain an induced subgraph isomorphic to H.

Beineke [17] obtained a forbidden-subgraph criterion for a graph to be a line
graph. In fact, he showed that a graph (7 is a line graph if and only if the nine graphs
of Fig. 1.25 are forbidden subgraphs for G. However, for the sake of later reference,
we prove only the following result.

Theorem 1.7.6. If G is a line graph, then K, 5 is a forbidden subgraph of G.

Proof. Suppose that G is the line graph of graph H and that G contains a K ;3 as
an induced subgraph. If v is the vertex of degree 3 in K, 3 and vy, v,, and v; are the
neighbors of v in this K 1, then the edge ¢ corresponding to v in H is adjacent to
the three edges e, e,, and e; corresponding to the vertices vy, v2, and v3. Hence,
one of the end vertices of ¢ must be the end vertex of at least two of e;, ¢, and e3 in
H. and hence v together with two of vy, v5, and v; form a triangle in G. This means
that the K| 3 subgraph of G considered above is not an induced subgraph of G, a
contradiction, O

1.8 Operations on Graphs

In mathematics, one always tries to get new structures from given ones. This also
applies to the realm of graphs where one can generate many new graphs from a
given set of graphs. In this section we consider some of the methods of generating
new graphs from a given pair of graphs.

Let G; = (V;, E;) and G» = (V>, E>) be two simple graphs.

Definition 1.8.1. Union of two graphs: The graph G = (V, E), where V = Vj U
V;and E = E| U E,, is called the union of ) and G, and is denoted by G, U G».
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G G Gi
B8 By i

Fig. 1.25 Nine graphs of Bieneke [17]

When G, and G, are vertex disjoint, G U G, is denoted by G| 4 G and is called
the sum of the graphs G, and G,.

The finite union of graphs is defined by means of associativity; in particular, if
Gy. Ga, .... G, are pairwise vertex-disjoint graphs, each of which is isomorphic to
G.then G; + G; + ... + G, is denoted by rG.

Definition 1.8.2. Intersection of twe graphs: If Vi N Vo # @, the graph G =
(V, E),where V =V, N Voand £ = E; M E, is the intersection of G, and G2
and is written as G, M G,.

Definition 1.8.3. Join of two graphs: Let G| and G be two vertex-disjoint graphs.
Then the join G, v G of G, and G is the supergraph of G, + G2 in which each
vertex of () is also adjacent to every vertex of G.

Figure 1.26 illustrates the graph G; v G;. If G; = K| and G = C,, then
Gy v (3 is called the wheel W,. W5 is shown in Fig. 1.27.

It is worthwhile to note that K, , = K. v K and K, = K; v K, ;.

It follows from the above definitions that

(i) n(GyUG2) = n(Gy) +n(Gz)—n(G N Gy), m(GUGy) = m(Gy)+m(Gy) -
H?[G[ n Gz)
(i) n(Gy + G2) = n(Gy) + n(G2), m(Gy + G2) = m(Gy) + m(G>) and
(iii) n(Gy v Ga) = n(G)+n(Gy), m(G, v Ga) = m(Gy) +m(G,) +n(Gyn(G,).
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Fig. 1.26 G, v G,
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Fig. 1.27 Wheel W5
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Chapter 2
Directed Graphs

2.1 Introduction

Directed graphs arise in a natural way in many applications of graph theory. The
street map of a city, an abstract representation of computer programs, and network
flows can be represented only by directed graphs rather than by graphs. Directed
graphs are also used in the study of sequential machines and system analysis in
control theory.

2.2 Basic Concepts

Definition 2.2.1. A directed graph D is an ordered triple (V(D). A(D), Ip), where
V(D) is a nonempty set called the set of vertices of D; A(D) is a set disjoint from
V(D). called the set of arcs of D; and Ip is an incidence map that associates with
each arc of D an ordered pair of vertices of D. If a is an arc of D, and Ip(a) =
(u,v), uis called the tail of a, and v is the head of a. The arc a is said to join v with
u. u and v are called the ends of a. A directed graph is also called a digraph.

With each digraph D, we can associate a graph G (written G (D) when reference
to D is needed) on the same vertex set as follows: Corresponding to each arc
of D, there is an edge of G with the same ends. This graph G is called the
underlying graph of the digraph D. Thus, every digraph D defines a unique
(up to isomorphism) graph G. Conversely, given any graph G, we can obtain a
digraph from G by specifying for each edge of G an order of its ends. Such a
specification is called an orientation of G.

Just as with graphs, digraphs have a diagrammatic representation. A digraph is
represented by a diagram of its underlying graph together with arrows on its edges,
the arrow pointing toward the head of the corresponding arc. A digraph and its
underlying graph are shown in Fig. 2.1.

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 37
Universitext, DOI 10.1007/978-1-4614-4529-6_2,
@ Springer Science+Business Media New York 2012
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D G (D)

Fig. 2.1 Digraph D and its underlying graph G(D)

Many of the concepts and terminology for graphs are also valid for digraphs.
However, there are many concepts of digraphs involving the notion of orientation
that apply only to digraphs.

Definition 2.2.2. If a = (u.v) is an arc of D, a is said to be incident out of u
and incident into v. v is called an oumeighbor of u, and u is called an inneighbor
of v. N; (1) denotes the set of outneighbors of u in D. Similarly, N (1) denotes
the set of inneighbors of u iIn D. When no explicit reference to D i1s needed, we
denote these sets by N " (u) and N~ (u), respectively. An arc a is incident with u if
it is either incident into or incident out of u. An arc having the same ends is called a
loop of D. The number of arcs incident out of a vertex v is the outdegree of v and 1s
denoted by d !} (v) or d*(v). The number of arcs incident into v is its indegree and
is denoted by d, (v) or d " (v).

For the digraph D of Fig.2.2, we have d T (v;) = 3, d T (v2) = 3, d T (v3) = 0,
d¥(vg) =2,d%(vs) =0,d¥(vs) =2, d"(v)) =2,d (v2) = 1,d7(v3) = 4,
d (v4) =1,d (vs) = 1, and d(vg) = 1. (The loop at v; contributes | each to
dt(vi)and d (v).)

The degree dp(v) of a vertex v of a digraph D is the degree of v in G(D). Thus,
d(v) = d*(v) + d~(v). As each arc of a digraph contributes 1 to the sum of the
outdegrees and 1 to the sum of indegrees, we have

D dtm= ) d"(»)=mD),

veli(D) ve (D)

where m( D) is the number of arcs of D.

A vertex of D is isolated if its degree is 0; it is pendant if its degree is 1.
Thus, for a pendant vertex v, either d ¥ (v) = l andd " (v) =0, or d " (v) = 0 and
d(v)=1.

Definitions 2.2.3. 1. A digraph D’ is a subdigraph of a digraph D if V(D') C
V(D), A(D") € A(D). and I is the restriction of I to A(D').
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Fig. 2.2 A strong digraph (lefr) and a symmetric digraph (right)

2. A directed walk joining the vertex vy to the vertex v; in D is an alternating
sequence W = waviaava...apvg, 1 < i =< k, with a; incident out of v;_,
and incident into v;. Directed trails, directed paths, directed cycles, and induced
subdigraphs are defined analogously as for graphs.

3. A vertex v is reachable from a vertex u of D if there is a directed path in D from
u to v,

4, Two vertices of D are diconnected if each is reachable from the other in D.
Clearly, diconnection i1s an equivalence relation on the vertex set of D, and if
the equivalence classes are Vi, V5. ..., V,. the subdigraphs of D induced by
Vi, Va, ..., V, are called the dicomponents of D.

5. A digraph is diconnected (also called strongly-connected) if it has exactly one
dicomponent. A diconnected digraph is also called a strong digraph.

6. A digraph is strict if its underlying graph is simple. A digraph D is symmetric
if, whenever (u, v) is an arc of D, then (v, u) is also an arc of D (see Fig.2.2).

Exercise 2.1. How many orientations does a simple graph of m edges have?

Exercise 2.2. Let D be a digraph with no directed cycle. Prove that there exists a
vertex whose indegree is 0. Deduce that there is an ordering vy, v, ..., v, of V such
that, for 2 <1 < n, every arc of D with terminal vertex v; has its initial vertex in
(g P TR Vi—1}.

2.3 Tournaments

A digraph D is a tournament if its underlying graph is a complete graph. Thus, in
a tournament, for every pair of distinct vertices # and v, either (u, v) or (v, u), but
not both, is an arc of D. Figures 2.3a, b display all tournaments on three and four
vertices, respectively.

The word "tournament” derives its name from the usual round-robin tournament.
Suppose there are n players in a tournament and that every player is to play against
every other player. The results of such a tournament can be represented by a
tournament on n vertices, where the vertices represent the n players and an arc
(u, v) represents the victory of player u over player v.

Suppose the players of a tournament have to be ranked. The corresponding
digraph T, a tournament, could be used for such a ranking. The ranking of the
vertices of T is as follows: One way of doing it is by looking at the sequence of
outdegrees of T. This is because d ;’ (v) stands for the number of players defeated by
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Y
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Fig. 2.3 Tournaments on (a) three and (b) four vertices

the player v. Another way of doing it is by finding a directed Hamilton path, that is,
a spanning directed path in 7. One could rank the players as per the sequence of this
path so that each player defeats his or her successor. We now prove the existence of
a directed Hamilton path in any tournament.

Theorem 2.3.1 (Redei [165]). Every tournament contains a directed Hamilton
path.

Proof. (By induction on the number of vertices n of the tournament.) The result can
be directly verified for all tournaments having two or three vertices. Hence, suppose
that the result is true for all tournaments on n > 3 vertices. Let T be a tournament on
n + 1 vertices vy, va, ..., Vi+1- Now, delete v, 4 from 7. The resulting subdigraph
T’ of T is a tournament on n vertices and hence by the induction hypothesis contains
a directed Hamilton path. Assume that the Hamilton path 1s vyv, ... v,, relabeling
the vertices, if necessary.

If the arc joining v, and v, 4 has v,y as its tail, then v, 4 ;vyva ... v, is a directed
Hamilton path in 7' and the result stands proved (see Fig. 2.4a).

If the arc joining v, and v, 4 is directed from v, to v, then viva ... vy v 15
a directed Hamilton path in T (see Fig. 2.4b).

Now suppose that none of (v,+;.v;) and (v,,v,+1) is an arc of T. Hence,
(vi,vye1) and (v,1y,v,) are arcs of T—the first arc incident into v,y and the
second arc incident out of v, . Thus, as we pass on from v, to v,, we encounter
a reversal of the orientation of edges incident with v,,+,. Let v;, 2 <1 < n, be
the first vertex where this reversal takes place, so that (v;—1.v,4) and (v,41.v;) are
arcs of T. Then viva ... Vi1V ViVier ... v, 18 a directed Hamilton path of T (see
Fig.2.4c). O

Theorem 2.3.2 (Moon [141,143]). Every vertex of a diconnected tournament T
on n vertices with n = 3 is contained in a directed k-cycle, 3 < k < n. (T is then
said to be vertex-pancyclic.)

Proof. Let T be a diconnected tournament with n > 3 and u, a vertex of T. Let
S = N1 (u), the set of all outneighbors of u in T, and §" = N ~(u), the set of all
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Fig. 2.5 Digraphs for proof of Theorem 2.3.2

inneighbors of u in T. As T is diconnected, none of § and §' is empty. If [S, §']
denotes the set of all arcs of T having their tails in § and heads in S’, then [S, §']
is also nonempty for the same reason. If (v, w) is an arc of [§, §'], then (u, v, w, u)
is a directed 3-cycle in T containing u. (see Fig. 2.5a.)

Suppose that u belongs to directed cycles of T of all lengths k, 3 < k < p, where
p < n. We shall prove that there is a directed (p + 1)-cycle of T containing u.

Let C : (vo,vi1,...,vp—1,vo) be adirected p-cycle containing u, where v,_j=u.
Suppose that v is a vertex of T not belonging to C such that for some i and j,
0=<i, j=p-—1i3# j thereexistarcs (vi,v)and (v,v;) of T (see Fig.2.5b). Then
there must exist arcs (v,,v) and (v,v,41) of A(T),i < r < j — 1 (suffixes taken
modulo p), and hence (vg.vi...., Ves Vo Vrglaenns Vp—1, Vo) is a directed (p + 1)-
cycle containing u (see Fig. 2.5b).
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If no such v exists, then for every vertex v of T not belonging to V(C), either
(v;,v) € A(T) foreveryi,0 <i < p—1,or(v,v;) € A(T) foreveryi,0 <i <
p—1.LetS ={ve V(T)\V(C) : (vi,v) € A(T) foreachi,0 <i < p—1}
and §' = {we V(T)\ V(C) : (w,v;) € A(T) foreachi,0 <i < p—1}. The
diconnectedness of T implies that none of §, S’, and [S, S’] is empty. Let (v, w) be
an arc of [S, S']. Then (vo, v, w,v2,...,vp—1, ) is a directed (p + 1)-cycle of T
containing v, = u (see Fig. 2.5c). O

Remark 2.3.3. Theorem 2.3.2 shows, in particular, that every diconnected tourna-
ment is Hamiltonian; that is, it contains a directed spanning cycle.

Exercise 3.1. Show that every tournament 7" is diconnected or can be made into
one by the reorientation of just one arc of T.

Exercise 3.2. Show that a tournament is diconnected if and only if it has a spanning
directed cycle.

Exercise 3.3. Show that every tournament of order » has at most one vertex v with
d¥t(v)=n-1.

Exercise 3.4. Show that for each positive integer n = 3, there exists a non-
Hamiltonian tournament of order » (that is, a tournament not containing a spanning
directed cycle).

Exercise 3.5. Show that if a tournament contains a directed cycle, then it contains
a directed cycle of length 3.

Exercise 3.6. Show that every tournament T contains a vertex v such that every
other vertex of T is reachable from v by a directed path of length at most 2.
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UNIT-2 CONNECTIVITY

3.1 Introduction

The connectivity of a graph is a “measure” of its connectedness. Some
connected graphs are connected rather “loosely” in the sense that the deletion of
a vertex or an edge from the graph destroys the connectedness of the graph.
There are graphs at the other extreme as well, such as the complete graphs K. n
> 2, which remain connected after the removal of any kvertices, | <k <n —

Consider a communication network. Any such network can be represented by
a graph in which the vertices correspond to communication centers and the
edges represent communication channels. In the communication network of Fig.
3.1a, any disruption in the communication center v will result in a
communication breakdown, whereas in the network of Fig. 3.1b, at least two
communication centers have to be disrupted to cause a breakdown. It is
needless to stress the importance of maintaining reliable communication
networks at all limes, especially during times of war, and the reliability of a
communication network has a direct bearing on its connectivity.

In this chapter, we study the two graph parameters, namely, vertex
connectivity and edge connectivity. We also introduce the parameter cyclical
edge connectivity. We prove Mengefs theorem and several of its variations. In
addition, the theorem of Ford and Fulkerson on flows in networks is established.

3.2 Vertex Cuts and Edges Cuts

We now introduce the notions of vertex cuts, edge cuts, vertex connectivity, and
edge connectivity.

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, DOI
10.1007/978-1 -4614-4529-6_3, © Springer Science+Business Media New York 2012
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Fig. 3.1 Two types of a
communication networks

b
X. M
Fig. 3.2 Graph illustrating
vertex cuts and edge culs

E] Ui

Definitions 3.2.1. 1. A subset V' of the vertex set V() of a connected graph G is
a vertex cut of G if G — V' is disconnected; it is a k-vertex cut if |V'| = k. V'
is then called a separating set of vertices of G. A vertex v of G is a cut vertex of
G if {v} 1s a vertex cut of G.

2. Let G be a nontrivial connected graph with vertex set V(G) and let § be a
nonempty subset of V(G). For § = V\S # @, let [S. S] denote the set of
all edges of G that have one end vertex in § and the other in S. A set of edges of
G of the form [S. §] is called an edge cur of G. An edge e is a cut edge of G if
{e} 1s an edge cut of . An edge cut of cardinality k is called a k-edge cut of G.

Example 3.2.2. For the graph of Fig. 3.2, {v,}, and {vs, v4} are vertex cuts. The edge
subsets {vivs, vavs}, {viva}, and {v4ve) are all edge cuts. Of these, v is a cut vertex,
and viv, and vqvg are both cut edges. For the edge cut {vivs, vyvs}, we may take
S = {vs} so that S = {vi.va,v3, va, v6}.

Remarks 3.2.3. 1. If uv is an edge of an edge cut E’, then all the edges having u
and v as their ends also belong to E’.
2. No loop can belong to an edge cut.

Exercise 2.1. If {x, y| is a 2-edge cut of a graph G, show that every cycle of G that
contains x must also contain y.

Remarks 3.2.4. 1f G is connected and £’ is a set of edges whose deletion results in
a disconnected graph, then E' contains an edge cut of G. It is clear that if e is a cut
edge of a connected graph G, then G — ¢ has exactly two components.
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Remarks 3.2.5. Since the removal of a parallel edge of a connected graph does not
result in a disconnected graph, such an edge cannot be a cut edge of the graph. A
set of edges of a connected graph G whose deletion results in a disconnected graph
is called a separating set of edges. In particular, any edge cut of a connected graph
G is a separating set of edges of G.

We now characterize a cut vertex of G.

Theorem 3.2.6. A vertex v of a connected graph G with at least three vertices is a
cut vertex of G if and only if there exist vertices u and w of G distinct from v such
that v is in every u-w path in G.

Proof. If v i1s a cut vertex of G, then G — v is disconnected and has at least two
components, G and G. Take w € V(Gy) and w € V(G3). Then every u-w path in
G must contain v, as otherwise 4 and w would belong to the same component of
G-—v.

Conversely, suppose that the condition of the theorem holds. Then the deletion
of v destroys every u-w path in G, and hence « and w lie in distinct components of
G — v. Therefore, G — v is disconnected and v is a cut vertex of G. O

Theorems 3.2.7 and 3.2.8 characterize a cut edge of a graph.

Theorem 3.2.7. An edge ¢ = xy of a connected graph G is a cut edge of G if and
only if e belongs 1o no cycle of G.

Proof. Let e be a cut edge of G and let [S, S] = {e} be the partition of V defined
by G — e so that one of x and y belongs to §, and the other to S, say, x € § and
y € §.If e belongs to a cycle of G. then [S, §] must contain at least one more edge,

contradicting that {e} = [S. §]. Hence, e cannot belong to a cycle.
Conversely, assume that ¢ 1s not a cut edge of G. Then G — ¢ is connected, and
hence there exists an x-y path P in G —e. Then P U{e} is acycle in G containing e.
O

Theorem 3.2.8. An edge e = xy is a cut edge of a connected graph G if and only
if there exist vertices u and v such that e belongs to every u-v path in G.

Proof. Lete = xy be acutedge of G. Then G — e has two components, say, G, and
Gy. Letu € V(G)) and v € V(G2). Then, clearly, every u-v path in G contains e.
Conversely, suppose that there exist vertices u and v satisfying the condition of
the theorem. Then there exists no u-v path in G — e so that G — e is disconnected.
Hence, € is a cut edge of G. O

Remark 3.2.9. There exist graphs in which every edge is a cut edge. It follows from
Theorem 3.2.7 that if G is a simple connected graph with at least one edge and
without cycles, then every edge of (7 is a cut edge of G. A similar result is not true
for cut vertices. Our next result shows that not every vertex of a connected graph
(with at least two vertices) can be a cut vertex of G.

Theorem 3.2.10. A connected graph G with at least two vertices contains at least
two vertices that are not cul vertices.
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Fig. 3.3 Graph for proof of i
Theorem 3.2.10

a b
Up ty

Fig. 3.4 Graph for proof of Proposition 3.2.11

Proof. First, suppose that n(G) = 3. Let u and v be vertices of G such that d(u, v)
is maximum. Then neither u nor v is a cut vertex of G. For if u were a cut vertex
of G, G — u would be disconnected, having at least two components. The vertex v
belongs to one of these components. Let w be any vertex belonging to a component
of G — u not containing v. Then every v-w path in G must contain u (see Fig.3.3).
Consequently, d(v,w) > d(v, u), contradicting the choice of u and v. Hence, u is
not a cut vertex of G. Similarly, v is not a cut vertex of G.

If n(G) = 2, then K3 is a spanning subgraph of G, and so no vertex of G is a
cut vertex of G. This completes the proof of the theorem. O

Proposition 3.2.11. A simple cubic (i.e., 3-regular) connected graph G has a cut
vertex if and only if it has a cut edge.

Proof. Let G have a cut vertex vy. Let vy, v,, v; be the vertices of G that are adjacent
to vg in G. Consider G — vg, which has either two or three components. If G — vy
has three components, no two of v, v3, and v3 can belong to the same component of
G —vyp. In this case, each of vovy, vgva, and vyv; is a cut edge of G. (See Fig. 3.4a.) In
the case when G — v, has only two components, one of the vertices, say v, belongs
to one component of G — vy, and v, and vy belong to the other component. In this
case, vgv; is a cut edge. (See Fig. 3.4b.)

Conversely, suppose that ¢ = uv is a cut edge of G. Then the deletion of « results
in the deletion of the edge uv. Since G is cubic, G — u is disconnected. Accordingly,
i is a cut vertex of G. O

Exercise 2.2. Find the vertex cuts and edge cuts of the graph of Fig. 3.2.
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Exercise 2.3. Prove or disprove: Let G be a simple connected graph with
n(G) = 3. Then G has a cut edge if and only if G has a cut vertex.

Exercise 2.4. Show that in a graph, the number of edges common to a cycle and an
edge cut is even.

3.3 Connectivity and Edge Connectivity

We now introduce two parameters of a graph that in a way measure the connected-
ness of the graph.

Definition 3.3.1. For a nontrivial connected graph G having a pair of nonadjacent
vertices, the minimum k& for which there exists a k-vertex cut is called the vertex
connectivity or simply the connectivity of G: it is denoted by «(G) or simply «
(kappa) when G is understood. If G is trivial or disconnected, x(G) is taken to be
zero, whereas if G contains K, as a spanning subgraph, x(G ) is taken to be n — 1.

A set of vertices and/or edges of a connected graph G 1s said to disconnect G if
its deletion results in a disconnected graph.

When a connected graph G (onn = 3 vertices) does not contain K,, as a spanning
subgraph, x is the connectivity of G if there exists a set of k vertices of G whose
deletion results in a disconnected subgraph of G while no set of ¥ — 1 (or fewer)
vertices has this property.

Exercise 3.1. Prove that a simple graph G with n vertices, n > 2, is complete if
and only if «(G) = n — 1.

Definition 3.3.2. The edge connectivity of a connected graph G is the smallest k
for which there exists a k-edge cut (i.e., an edge cut having k edges). The edge
connectivity of a trivial or disconnected graph is taken to be 0. The edge connectivity
of G is denoted by A(G). If A is the edge connectivity of a connected graph G, there
exists a set of A edges whose deletion results in a disconnected graph, and no subset
of edges of G of size less than A has this property.

Exercise 3.2. Prove that the deletion of edges of a minimum-edge cut of a
connected graph G results in a disconnected graph with exactly two components.
(Note that a similar result is not true for a minimum vertex cut.)
Definition 3.3.3. A graph G is r-connected if kK(G) = r. Also, G is r-edge
connected if A(G) = r.

An r-connected (respectively, r-edge-connected) graph is also €-connected
(respectively, £-edge connected) foreach £, 0 < £ < r — 1.

For the graph G of Fig. 3.5, k(G) = 1 and A(G) = 2.

We now derive inequalities connecting k(G ), A(G), and §(G).

Theorem 3.3.4. For any loopless connected graph G, k(G) < A(G) < 6(G).
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Fig. 3.5 A l-connected
graph

{;

Fig. 3.6 Graph G with
k=1,A=2andd=3

&

Proof. We observe that k = 0 if and only if A = 0. Also, § = 0 implies that ¥ = 0
and A = 0. Hence we may assume that k, A, and & are all at least 1. Let & be an
edge cut of G with A edges. Let u and v be the end vertices of an edge of &'. For
each edge of & that does not have both u and v as end vertices, remove an end vertex
that is different from u« and v. If there are # such edges, at most ¢ vertices have been
removed. If the resulting graph, say H, is disconnected, then k < t < A. Otherwise,
there will remain a subset of edges of E having u and v as end vertices, the removal
of which from H would disconnect . Hence, in addition to the already removed
vertices, the removal of one of « and v will result in either a disconnected graph or
a trivial graph. In the process, a set of at most 1 + 1 vertices has been removed and
Kk<t+1=<A.

Finally, it is clear that A < §. In fact, if v is a vertex of G with dg(v) = 8, then
the set [{v}, V \ {v}] of 8 edges of G incident at v forms an edge cut of G. Thus,
A =4 O

It is possible that the inequalities in Theorem 3.3.4 can be strict. See the graph G
of Fig. 3.6, for whichk = 1,4 = 2,and § = 3.

Exercise 3.3. Prove or disprove: If H is a subgraph of G. then

(a) k(H) < k(G) and
(b) A(H) = A(G).

Exercise 3.4. Determine A(K,).

Exercise 3.5. Determine the connectivity and edge connectivity of the Petersen
graph P. (See graph P of Fig. 1.7. Note that P is a cubic graph.)
Theorem 3.3.5 gives a class of graphs for which k = A.

Theorem 3.3.5. The connectivity and edge connectivity of a simple cubic graph G
are equal.
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Fig. 3.7 Connected cubic graphs for proof of Theorem 3.3.5

Proof. We need only consider the case of a connected cubic graph. Again, since
k < A < § = 3, we have only to consider the cases when x = 1, 2, or 3. Now,
Proposition 3.2.11 implies that for a simple cubic graph G, k = 1 if and only if
A=1

If k = 3, then by Theorem 3.34,3 =x = A <4 = 3, and hence A = 3.

We shall now prove that k = 2 implies that A = 2.

Suppose x = 2 and {u. v} is a 2-vertex cut of G. The deletion of {u, v} results
in a disconnected subgraph G’ of G. Since each of u and v must be joined to each
component of G’, and since G is cubic, G’ can have at most three components.
If G’ has three components, G, G,, and Gs, and if ¢; and f;, i = 1,2, 3, join,
respectively, u and v with G;, then each pair {e;, f;} is an edge cut of G (see
Fig.3.7a).

If G’ has only two components, G and G, then each of u and v is joined to one
of G| and G; by a single edge, say, e and f, respectively, so that {e, f} is an edge
cut of G (see Fig. 3.7b—d).

Hence, in either case there exists an edge cut consisting of two edges. As such,
A < 2. But by Theorem 3.3.4, A = x = 2. Hence A = 2. Finally, the above
arguments show that if A = 3, thenx = 3, andif A = 2, then x = 2. O

Exercise 3.6. Give examples of cubic graphs G, G, and G; with «(G;) = 1,
k{G,) = 2, and k(G;3) = 3.
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Fig. 3.8 Graph for proof of
Theorem 3.3.7

Definition 3.3.6. A family of two or more paths in a graph G is said to be internally
disjoint if no vertex of G is an internal vertex of more than one path in the family.

We now state and prove Whitney's characterization theorem of 2-connected
graphs.

Theorem 3.3.7 (Whitney [193]). A graph G with at least three vertices is
2-connected if and only if any two vertices of G are connected by at least two
internally disjoint paths.

Proof. Let GG be 2-connected. Then G contains no cut vertex. Let u and v be two
distinct vertices of G. We now use induction on d(u,v) to prove that # and v are
joined by two internally disjoint paths.

Ifd(u.v) = 1.lete = uv. As G is 2-connected and n(G) = 3. e cannot be a cut
edge of G, since if ¢ were a cut edge, at least one of u and v must be a cut vertex.
By Theorem 3.2.7, ¢ belongs to a cycle C in G. Then C — e is a u-v path in G,
internally disjoint from the path uv.

Now assume that any two vertices x and y of G withd(x,v) = k—1.k = 2, are
joined by two internally disjoint x-y paths in G. Let d(u, v) = k. Let P be a u-v path
of length k and w be the vertex of G just preceding v on P. Then d(u, w) = k — 1.
By an induction hypothesis, there are two internally disjoint u-w paths, say P, and
P>, in G. As G has no cut vertex, G — w is connected and hence there exists a u-v
path Q in G — w. Q is clearly a u-v path in G not containing w. Let x be the vertex
of Q such that the x-v section of (0 contains only the vertex x in common with
Py U P, (see Fig. 3.8).

We may suppose, without loss of generality, that x belongs to P;. Then the union
of the u-x section of P; and x-v section of O and P» U (wv) are two internally
disjoint u-v paths in G. This gives the proof in one direction.

In the other direction, assume that any two distinct vertices of G are connected
by at least two internally disjoint paths. Then G is connected. Further, G cannot
contain a cut vertex, since if v were a cut vertex of . there must exist vertices u and
w such that every u-w path contains v (compare with Theorem 3.2.6), contradicting
the hypothesis. Hence, G is 2-connected. O
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Fig. 3.9 Graph for
Remark 3.39

Theorem 3.3.8. A graph G with at least three vertices is 2-connected if and only if
any two vertices of G lie on a common cycle.

Proof. Letu and v be any two vertices of a 2-connecied graph G. By Theorem 3.3.7,
there exist two internally disjoint paths in G joining u and v. The union of these two
paths is a cycle containing i and v.

Conversely, if any two vertices u and v lie on a cycle C, then C is the union of
two internally disjoint u-v paths. Again, by Theorem 3.3.7, G is 2-connected. [

Remark 3.3.9. If G is 2-connected, if 1 and v are distinct vertices of ¢, and if P
is a u-v path in G, it is not in general true that there exists another u-v path Q in
G such that P and Q are internally disjoint. For example, in the 2-connected graph
of Fig. 3.9, if P is the u-w' path uwww/'u'w’, there exists no u-w' path Q in G that is
internally disjoint from P. However, there do exist two internally disjoint u-w’ paths
in G.

Exercise 3.7. (a) Show that a graph G with at least three vertices is 2-connected if
and only if any vertex and any edge of G lie on a common cycle of G.

(b) Show that a graph G with at least three vertices is 2-connected if and only if
any two edges of G lie on a common cycle.

Exercise 3.8. Prove that a graph is 2-connected if and only if for every pair of
disjoint connected subgraphs G, and G, there exist two internally disjoint paths P,
and P> of G between G, and G>.

Exercise 3.9. Edge form of Whitney’s theorem: Prove that a graph G withn = 3
is 2-edge connected if and only if any two distinct vertices of G are connected by
at least two edge-disjoint paths in G. [Hint: Imitate the proof of Theorem 3.3.7, or
pass onto L{G).]

Exercise 3.10. (a) Disprove by a counterexample: If k(G) = k, then k (L(G))=k.
(b) Prove: A(G) < k(L(G)). Give an example of a graph G for which A(G) <
K(L(G)).

Theorem 3.3.10. In a 2-connected graph G, any two longest cycles have at least
two vertices in common.

Proof. Let Cy = wus...upuy and Co = vyva ... vy be two longest cycles in G.
If Cy and C; are disjoint, there exist (since G is 2-connected) two disjoint paths,

Scanned with CamScanner



58 3 Connectivity

Ch Cy Py Ql

Fig. 3.10 Graphs for proof of Theorem 3.3.10

Fig. 3.11 Graph for proof of P
Theorem 3.3.11 2

say, Py joining u; and v; and P, joining uy and v, connecting C) and C; such that
ui 7 u¢ and v; # v, (see Exercise 3.8). u; and u¢ divide C; into two subpaths. Let
L, be the longer of these subpaths. (If both subpaths are of equal length, we take
either one of them to be L,.) Let L, be defined in a similar manner in C5. Then
Ly U Py ULy U P;is acycle of length greater than that of C, (or C;). Hence, C,
and C; cannot be disjoint. (See Fig. 3.10.)

Suppose that C; and C; have exactly one vertex, say #; = v;, in common. Since
G is 2-connected, u; is not a cut vertex of G, and so there exists a path P with one
end vertex u; in C| — u; and the other end vertex Vj in C; — vy, which is internally
disjoint from C; U C,. Let Py denote the longer of the two u;-u; sections of C;,
and @ denote the longer of the two v;-v; sections of C;. If the two sections of C,
or of C, are of equal length, take any one of them. Then P, U P U Q) is a cycle
longer than C; (or C3). But this is impossible. Thus, C; and C> must have at least
two vertices in common. O

Theorem 3.3.11 gives a simple characterization of 3-edge-connected graphs.

Theorem 3.3.11. A connected simple graph G is 3-edge connected if and only if
every edge of G is the (exact) intersection of the edge sets of two cycles of G.

Proof. Let G be 3-edge connected and let x = uv be an edge of G. Since G — x is
2-edge connected, there exist two edge-disjoint u-v paths Py and P; in G — x (see
Exercise 3.9). Now, P; U {x} and P, U {x} are two cycles of G, the intersection
of whose edge sets is precisely {x} (see Fig.3.11).
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3.4 Blocks 59

Conversely, suppose that for each edge x = uv there exist two cycles C and C’
such that {x} = E(C) N E(C'). G cannot have a cut edge since, by hypothesis,
each edge belongs to two cycles and no cut edge can belong to a cycle; nor can
G contain an edge cut consisting of two edges x and y, by Exercise 2.1. (Since
any cycle that contains x also contains y, the intersection of any two such cycles
must contain both x and y, a contradiction.) Hence, A(G) = 3, and G is 3-edge
connected. ([

Scanned with CamScanner



Chapter 4
Trees

4.1 Introduction

“Trees™ form an important class of graphs. Of late, their importance has grown
considerably in view of their wide applicability in theoretical computer science.

In this chapter, we present the basic structural properties of trees, their centers
and centroids. In addition, we present two interesting consequences of the Tutte—
Nash-Williams theorem on the existence of k pairwise edge-disjoint spanning trees
in a simple connected graph. We also present Cayley’s formula for the number
of spanning trees in the labeled complete graph K,,. As applications, we present
Kruskal’s algorithm and Prim’s algorithm, which determine a mimmum-weight
spanning tree in a connected weighted graph and discuss Dijkstra’s algorithm, which
determines a minimum-weight shortest path between two specified vertices of a
connected weighted graph.

4.2 Definition, Characterization, and Simple Properties

Certain graphs derive their names from their diagrams. A “tree” is one such graph.
Formally, a connected graph without cycles 1s defined as a rree. A graph without
cycles is called an acyclic graph or a forest. So each component of a forest is a tree.
A forest may consist of just a single tree! Figure 4.1 displays two pairs of isomorphic
trees.

Remarks 4.2.1. 1. It follows from the definition that a forest (and hence a tree) is a
simple graph.

2. A subgraph of a tree is a forest and a connected subgraph of a tree T is a subtree
of T.

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 73
Universitext, DOI 10.1007/978-1-4614-4529-6_4,
@ Springer Science+Business Media New York 2012
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Fig. 4.1 Examples of
isomorphic trees

12

—

12

In a connected graph, any two distinct vertices are connected by at least one path.
Trees are precisely those simple connected graphs in which every pair of distinct
vertices is joined by a unique path.

Theorem 4.2.2. A simple graph is a tree if and only if any two distinct vertices are
connected by a unigue path.

Proof. Let T be a tree. Suppose that two distinct vertices u# and v are connected by
two distinct u-v paths. Then their union contains a cycle (cf. Exercise 5.9, Chap. 1)
in T, contradicting that T i1s a tree.

Conversely, suppose that any two vertices of a graph G are connected by a unique
path. Then G 1is obviously connected. Also, G cannot contain a cycle, since any two
distinct vertices of a cycle are connected by two distinct paths. Hence G is a tree.[]

A spanning subgraph of a graph G, which is also a tree, is called a spanning tree
of G. A connected graph G and two of its spanning trees Ty and 75 are shown in
Fig.4.2.

The graph G of Fig. 4.2 shows that a graph may contain more than one spanning
tree; each of the trees T and T3 is a spanning tree of G.

A loop cannot be an edge of any spanning tree, since such a loop constitutes a
cycle (of length 1). On the other hand, a cut edge of G must be an edge of every
spanning tree of G. Theorem 4.2.3 shows that every connected graph contains a
spanning tree.

Theorem 4.2.3. Every connected graph contains a spanning tree.

Proof. Let G be a connected graph. Let % be the collection of all connected
spanning subgraphs of G. % is nonempty as G € %. Let T € % have the fewest
number of edges. Then 7" must be a spanning tree of G. If not, 7" would contain
a cycle of G, and the deletion of any edge of this cycle would give a (spanning)
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Fig. 4.2 Graph G and two of
its spanning trees Ty and T3

€a

subgraph in % having one edge less than that of T, This contradicts the choice of T'.
Hence, T has no cycles and is therefore a spanning tree of G. O

There is a nice relation between the number of vertices and the number of edges
of any tree.

Theorem 4.2.4. The number of edges in a tree on n vertices is n — 1. Conversely, a
connected graph on n vertices and n — 1 edges is a tree.

Proof. Let T be a tree. We use induction on n to prove thatm = n—1, Whenn = 1
or n = 2, the result is straightforward.

Now assume that the result is true for all trees on (n — 1) or fewer vertices,
n > 3. Let T be a tree with n vertices. Let ¢ = wuv be an edge of T. Then wuv is
the unique path in T joining # and v. Hence the deletion of e from T results in a
disconnected graph having two components T} and 75. Being connected subgraphs
of a tree, T} and T5 are themselves trees. As n(77) and n(73) are less than n(7'), by
an induction hypothesis, m(7y) = n(T}) — 1 and m(T3) = n(T>) — 1. Therefore,
m(T)y=m(TN+m(T)+ 1 =n(T—-14+n(T2) -1+ 1 =n(T)+n(T2)—1=
n(7T’) — 1. Hence, the result is true for 7. By induction, the result follows in one
direction.
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Conversely, let G be a connected graph with n vertices and n — 1 edges. By
Theorem 4.2.3, there exists a spanning tree 7 of G. T has n vertices and being a
tree has (n — 1) edges. Hence G = T', and G 1is a tree. O

Exercise 2.1. Give an example of a graph with n vertices and n — 1 edges that 1s
not a tree.

Theorem 4.2.5. A tree with at least two vertices contains at least two pendant
vertices (1.e., end vertices or vertices of degree 1).

Proof. Consider a longest path P of a tree T. The end vertices of P must be pendant
vertices of T'; otherwise, at least one of the end vertices of P has a second neighbor
in P, and this yields a cycle, a contradiction. O

Corollary 4.2.6. If6(G) = 2, G contains a cycle.
Proof. 1f G has no cycles, G is a forest and hence §(G) < 1 by Theorem4.2.5. [

Exercise 2.2. Show that a simple graph with @ components is a forest if and only
ifm=n-w.

Exercise 2.3. A vertex v of a tree T with at least three vertices is a cut vertex of T
if and only 1f v is not a pendant vertex.

Exercise 2.4. Prove that every tree is a bipartite graph.
Our next result is a characterization of trees.

Theorem 4.2.7. A connected graph G is a tree if and only if every edge of G is a
cut edge of G.

Proof. If G is a tree, there are no cycles in G. Hence, no edge of G can belong to
a cycle. By Theorem 3.2.7, each edge of G is a cut edge of G. Conversely, if every
edge of a connected graph G is a cut edge of G, then G cannot contain a cycle, since
no edge of a cycle is a cut edge of G. Hence, G is a tree. O

Theorem 4.2.8. A connected graph G with at least two vertices is a tree if and only
if its degree sequence (d, d. ..., d,) satisfies the condition: 3 ""_ d; =2(n—1)
with d; > 0 for each i.

Proof. Let G be a tree. As G 1s connected and nontrivial, it can have no isolated
vertex. Hence every term of the degree sequence of G is positive. Further, by
n
Theorem 1.44, " d;, =2m = 2(n —1).
i=1
Conversely, assume that the condition }_'_, d; = 2(n — 1) holds. This implies
thatm =n —las ) ;_, d; = 2m. Now apply Theorem 4.2.4. O

Lemma 4.2.9. If u and v are nonadjacent vertices of a tree T, then T + uv contains
a unigue cycle.

Proof. If P is the unique u-v path in T, then P + wvis acycle in T + wv. It 1s
unique, as the path P is unique in T. O
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Example 4.2.10. Prove that if m(G) = n(G) for a simple connected graph G, then
G is unicyclic, that is, a graph containing exactly one cycle.

Proof. By Theorem 4.2.3, G contains a spanning tree 7. As T has n(G) — 1 edges,
E(G)\ E(T) consists of a single edge e. Then G = T U e is unicyclic. O

Exercise 2.5. If for a simple graph G, m(G) = n(G), prove that G contains a
cycle.

Exercise 2.6. Prove that every edge of a connected graph G that is not a loop is in
some spanning tree of G.

Exercise 2.7. Prove that the following statements are equivalent:

(i) G is connected and unicyclic (i.e., G has exactly one cycle).
(i) G is connected and n = m.
(iii) For some edge ¢ of G, G — e is a tree.
(iv) G i1s connected and the set of edges of G that are mot cut edges forms a cycle.

Example 4.2.11. Prove that for a simple connected graph G, L.(G) is isomorphic to
G if and only if G is a cycle.

Proof. If G is a cycle, then clearly L(G) is isomorphic to G. Conversely, let
G =~ L(G). Then n(G) = n(L(G)), and m(G) = m(L(G)). But since
n(L(G)) = m(G), we have m(G) = n(G). By Example 4.2.10, G is unicyclic.
Let C = vyva...vv; be the unique cycle in G. If G # C, there must be an edge
e ¢ E(C) incident with some vertex v; of C (as G is connected). Thus, there is
a star with at least three edges at v;. This star induces a clique of size at least 3 in
L(G) (=~ G). This shows that there exists at least one more cycle in L(G) distinct
from the cycle corresponding to C in G. This contradicts the fact that L(G) =~ G
(as G is unicyclic). O
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4.4 Counting the Number of Spanning Trees

Counting the number of spanning trees in a graph occurs as a natural problem in
many branches of science. Spanning trees were used by Kirchoff to generate a “cycle
basis” for the cycles in the graphs of electrical networks. In this section, we consider
the enumeration of spanning trees in graphs.

The number of spanning trees of a connected labeled graph G will be denoted
by 7(G). If G is disconnected, we take 7(G) = 0. There is a recursive formula
for 7(G). Before we establish this formula, we shall define the concept of edge
contraction in graphs.

Definition 4.4.1. An edge e of a graph G is said to be contracted if it is deleted
from G and its ends are identified. The resulting graph is denoted by G o e.

Edge contraction is illustrated in Fig. 4.7.

If e is not a loop of G, then n(G oe) = n(G) — 1, m(G oe) = m(G) — 1, and
w(G o e) = w(G). Foraloop e, n(G o e) = n(G), m(G oe) = m(G) — 1, and
w(G o ¢) = w(G). Theorem 4.4.2 gives a recursive formula for 7(G).

Theorem 4.4.2. If e is not a loop of a connected graph G, ©(G) = ©(G — e) +
(G o e).

G GGEI Gﬂﬁa

Fig. 4.7 Edge contraction
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Proof. ©(G) is the sum of the number of spanning trees of G containing ¢ and the
number of spanning trees of G not containing e.

Since V(G — e) = V(G), every spanning tree of G — e is a spanning tree of
G not containing e, and conversely, any spanning tree of GG for which e is not an
edge is also a spanning tree of G — e. Hence the number of spanning trees of G not
containing e is precisely the number of spanning trees of G — e, that is, (G —e). If
T is a spanning tree of G containing e, the contraction of e in both 7" and G results
inaspanning tree 7 oe of G oe.

Conversely, if Tj is a spanning tree of G o e, there exists a unique spanning tree
T of G containing e such that T o ¢ = Tj. Thus, the number of spanning trees of G
containing ¢ is (G o e). Hence t1(G) = (G —¢) + (G o e). O

We illustrate below the use of Theorem 4.4.2 in calculating the number of
spanning trees. In this illustration. each graph within parentheses stands for the

|
number of its spanning trees. For example, D] stands for the number of spanning
trees of Cj.

Example 4.4.3. Find t(G) for the following graph G:

Proof.
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i

I
+
+

[
>

=14+3+2(4)
= 12.
[By enumeration,
‘ ‘ =1, A = 3, and = 4
|
Hence t(G) = 12. O

We have seen in Sect. 3.2 that every connected graph has a spanning tree. When
will it have k edge-disjoint spanning trees? An answer to this interesting question
was given by both Tutte [181] and Nash-Williams [145] at just about the same time.

Theorem 4.4.4 (Tutte [181]; Nash-Williams [145]). A simple connected graph
G contains k pairwise edge-disjoint spanning trees if and only if for each partition
22 of V(G) into p parts, the number m(27) of edges of G joining distinct parts is
atleastk(p—1),2 < p < |V(G)|.

Proof. We prove only the easier part of the theorem (necessity of the condition).
Suppose G has k pairwise edge-disjoint spanning trees. If 7" is one of them and if

2= P V1 is a partition of V(G) into p parts, then G must have at least
| 22| — 1 edges of T'. As this is true for each of the k pairwise edge-disjoint trees of
(7, the number of edges joining distinct parts of 27 is at least k(p — 1). O

For the proof of the converse part of the theorem, we refer the reader to the
references cited.

As a consequence of Theorem 4.4.4, we obtain immediately at least one family
of graphs that possesses the property stated in the theorem.
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Corollary 4.4.5. Every 2k-edge-connected (k = 1) graph contains k pairwise
edge-disjoint spanning trees.

Proof. Let G be 2k-edge connected, and let &2 = {V),..., V,} be a partition of V
into p subsets. By hypothesis on G, there are at least 2k edges from each part V; to
Vb= Uf=1 V. The total number of such edges is at least k p (as each such edge

j#Fi
is counted twice). Hence, m(.#?) = kp > k(p — 1). Theorem 4.4.4 now ensures that
there are at least k pairwise edge-disjoint spanning trees in (. O

Setting & = 2 in the above corollary, we get the result of Kundu.

Corollary 4.4.6 (Kundu [128]). Every 4-edge-connected graph contains two

edge-disjoint spanning (rees.

Corollary 4.4.7. Every 3-edge-connected graph G has three spanning trees whose
intersection is a spanning totally disconnected subgraph of G.

Proof. Let G be a 3-edge-connected graph. Duplicate each edge of G by a
parallel edge. The resulting graph, say, G', is 6-edge connected, and hence by
Corollary 4.4.5, G" has three pairwise edge-disjoint spanning trees, say, 7|, 75, and
T;.Hence E(T, N T, NTJ) = ¢.Let T;, 1 =i < 3, be the tree obtained from T}
by replacing any parallel edge of G’ by its original edge in G. Then, clearly, T}, T3,
and T3 are three spanning trees of ¢ with E(T), N T3 N T3) = ¢ because neither an
edge of G nor its parallel edge can belong to all of T}, 75, and T3. O

4.5 Cayley’s Formula

Cayley was the first mathematician to obtain a formula for the number of spanning
trees of a labeled complete graph.

Theorem 4.5.1 (Cayley [33]). t(K,) = n""?, where K, is a labeled complete

graph on n vertices, n > 2.
Before we prove Theorem 4.5.1, we establish two lemmas.

=1

Lemma 4.5.2. Ler(d,, ..., d,) be a sequence of positive integers with Y ' d; =
= di,

2(n — 1). Then there exists a tree T with vertex set {vy,..., v and d(v;)
l<i=<n
Proof. It is easy to prove the result by induction on n. O

Lemma 4.5.3. Let {vy,.... Vo), 0 = 2 be given and let {d,, . .. ,d,} be a sequence
of positive integers such that Y | _, d; = 2(n — 1). Then the number of trees with
(n=2)!

{V], R ]r'n} as H’If vertex set mn H-’hi'(?h Vi J‘lﬂﬁ dfgrff d;. 1 ":_: I "_: n, Is W‘
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Proof. We prove the result by induction on n. Forn = 2, 2(n — 1) = 2, so that
dy+dy =2 Sinced), = landd; = 1,d| = d; = 1. Hence K is the only tree in
which v; has degree d;, i = 1, 2. So the result is true for n = 2. Now assume that
the result is true for all positive integersupton — 1, n = 3. Let {d;.....d,} bea

sequence of positive integers such that Y./, di = 2(n — 1), and let {vi,..., Vi)
be any set. If d; > 2 foreveryi, 1 <i < n,then ) _, d; > 2n. Hence, there
exists an [, 1 < § < n, for which d; = 1. For the sake of definiteness, assume

that d, = 1. By Lemma 4.5.2, there exists a tree T with V(T) = {v|,...,v,}
and degree of v; = d;. Let v; be the unique vertex of T adjacent to v,. Delete v,
from T. The resulting graph is a tree T’ with {v,...,v,—1} as its vertex set and
(dy,....dj—1,dj —1,dj1y,...,dy—1) as its degree sequence.

In the opposite direction, given a tree T with {v..... V,—1} as its vertex set
and (d,..., dji—1,dj — 1,dj+1,...,dy—1) as its degree sequence, a tree T with
vertex set {vq,..., v, | and degree sequence (d,..., dy), d, = 1, can be obtained
by introducing a new vertex v, and taking T = T’ + v;v,. Hence the number of
trees with vertex set {v,.... v, } and degree sequence (d,. ..., d,) withd, = degree
of v, = | and v, adjacent to v; is the same as the number of trees with vertex set
{Vi,....vy—1} and degree sequence (dy,...,d;-1.d; — 1,dj41,..., dy—1). By the
induction hypothesis, the latter number is equal to

(n — 3)!
(di—1)! ... (dj =1 (d; =2 (dj4a =D ... (dp=1 —1)!

B (n—3)d; — 1)
T @i= 1N 2 @pr— D= T @41 — 1)) o5 @ami— D}

Summing over j, the number of trees with {v|,...,v,} as its vertex set and
(dy...., d,) as its degree sequence is
"i (n—3)!(d; —1)
1 _
=1 (d] I).- e (d"—l I)!
n—I1
(n —3)!
= d; —1
(di = D! ... (dpy = D! =1

n=—1

(n—3)!
T (di=1)! ... (dp—y = D)) Edi 1)

_ 3,
=@ - u!(rf” (j{ —— el )
(1 —3)!

7 7 Ty 7 e
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_ (n — 2)!
iy~ DY e (g1
(n —2)!

(recall that d, = 1).

T s A1

This completes the proof of Lemma 4.5.2. Ll

Proof of theorem 4.5.1. The total number of trees T, with vertex set {v,...,v,}
is obtained by summing over all possible sequences (d,...,d,) with }|_, d; =
2n — 2. Hence,

(n—=2)! e
WKy = with di =2n—-2
—-2)! -
=3 2 ih Y ki =n—2, whereki =di— 1,157 <n.
k;gﬂ}"l' oo Kl i=I
Putting x; = x = -+ = x, = 1 and m = n — 2 in the multinomial expansion

Ky ks Ky

Xy X PP o
(x1+xz+*--+xn)’"=£2 ;:”;21 kﬂ' m! with (k) + ka2 + -+ k) = m,
-'.?_..ﬂ H s omoa ne=

- 2)!
we get n" 2 = ) kl'{:z' }k - with (k1 + k2 + -+ + ks) = n — 2. Thus,
kfz{} 4 sow s w Ihj]s

(K, =n""2 O
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UNIT -3
Independent Sets and Matchings

5.1 Introduction

Vertex-independent sets and vertex coverings as also edge-independent sets
and edge coverings of graphs occur very naturally in many practical situations
and hence have several potential applications. in this chapter, we study the
properties of these sets. In addition, we discuss matchings in graphs and, in
particular, in bipartite graphs. Matchings in bipartite graphs have varied
applications in operations research. We also present two celebrated theorems
of graph theory, namely, Tulte's 1-factor theorem and Hall's matching theorem.
All graphs considered in this chapter are loopless.

5.2 Vertex-Independent Sets and Vertex Coverings

Definition 5.2.1. A subset Sof the vertex set K of a graph Gis called independent if
no two vertices of Sare adjacent in G. SC V is a maximum independent set of G
if G has no independent set § with IS”! > |S|. A maximal independent set of G is
an independent set that is not a proper subset of another independent set of G.

For example, in the graph of Fig. 5.1, {w. v, w}is a maximum independent set
and (x, y} is a maximal independent set that is not maximum.

Definition 5.2.2. A subset AT of V is called a covering of G if every edge of Gis
incident with at least one vertex of K. A covering K is minimum if there is no
covering K'of G such that \K'\ < |; it is minimal if there is no covering K\ of
G such that K\ is a proper subset of K

In the graph W5 of Fig. 5.2, {vi. V2, V3, V4, V5} is a covering of W5and (V|. V3.
V4. is a minimal covering. Also, the set {x, y/is a minimum covering of the graph
of Fig. 5.1.

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext, DOI 97
10.1007/978-1 -4614-4529-6_3, © Springer Science+Business Media New York 2012
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Fig. 5.1 Graph with
maximum independent set
{u. v, w} and maximal
independent set {x, v}

]

=3
—
=

Fig. 5.2 Wheel W;

th g

The concepts of covering and independent sets of a graph arise very naturally in
practical problems. Suppose we want to store a set of chemicals in different rooms.
Naturally, we would like to store incompatible chemicals, that is, chemicals that
are likely to react violently when brought together, in distinct rooms. Let G be a
graph whose vertex set represents the set of chemicals and let two vertices be made
adjacent in G if and only if the corresponding chemicals are incompatible. Then any
set of vertices representing compatible chemicals forms an independent set of G.

Now consider the graph G whose vertices represent the various locations in a
factory and whose edges represent the pathways between pairs of such locations.
A light source placed at a location supplies light to all the pathways incident to that
location. A set of light sources that supplies light to all the pathways in the factory
forms a covering of G.

Theorem 5.2.3. A subset S of V is independent if and only if V\S is a covering
of G.

Proof. § is independent if and only if no two vertices in § are adjacentin G. Hence,
every edge of G must be incident to a vertex of V'\ §. This is the case if and only if
V'\S is a covering of G. O

Definition 5.2.4. The number of vertices in a maximum independent set of G is
called the independence number (or the stability number) of G and is denoted by
@ (G). The number of vertices in a minimum covering of G is the covering number
of G and is denoted by B(G). We denote these numbers simply by & and § when
there is no confusion.

Corollary 5.2.5. Forany graph G, @ + B = n.
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5.3 Edge-Independent Sets 09

Proof. Let S be a maximum independent set of G. By Theorem 5.2.3, V\§ is a
covering of G and therefore |VV\S| = n —« > f. Similarly, let K be a minimum
covering of G. Then V'\ K is independent and so |V\K| = n — B < «. These two
inequalities together imply that n = @ + f. O

5.3 Edge-Independent Sets

Definitions 5.3.1. 1. A subset M of the edge set £ of a loopless graph G is called
independent if no two edges of M are adjacent in G.

2. A matching in G is a set of independent edges.

3. An edge covering of (i is a subset L of E such that every vertex of (7 is incident
to some edge of L. Hence, an edge covering of G exists if and only if § > 0.

4. A matching M of G is maximum if G has no matching M’ with |M'| > |M|.
M is maximal if G has no matching M' strictly containing M. «'(G) is the
cardinality of a maximum matching and '(G) is the size of a minimum edge
covering of G.

5. A set § of vertices of G is said to be saturated by a matching M of G or M-
saturated if every vertex of § is incident to some edge of M. A vertex v of G is
M -saturated if {v} is M -saturated. v is M -unsaturated if it is not M -saturated.
For example, in the wheel W5 (Fig.5.2). M = {viva, v} is a maximal

matching; {v|vs, vavs, vgvg} 1s 2 maximum matching and a minimum edge covering;

the vertices vy, v, v4, and vg are M -saturated, whereas v3 and vs are M -unsaturated.

Remark 5.3.2. The edge analog of Theorem 5.2.3 is not true, however. For instance,
in the graph G of Fig.5.3, the set E' = {e;, ey} is independent, but E\E' =
{e1. e, es} is not an edge covering of G. Also, E” = {e}, e, e4} is an edge covering
of G, but E\E"” is not independent in G. Again, E' is a matching in G that saturates
V2., V3, vy and vs but does not saturate v;.

Theorem 5.3.3. For any graph G for which§ > 0, a’ + B’ = n.

Proof. Let M be a maximum matching in G so that [M| = «'. Let U be the set
of M -unsaturated vertices in G. Since M is maximum, U is an independent set of
vertices with |U| = n — 2a’. Since § > 0, we can pick one edge for each vertex in

Fig. 5.3 Graph illustrating .
edge relationships G
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Fig. 5.4 Herschel graph

U incident with it. Let F be the set of edges thus chosen. Then M U F is an edge
covering of G. Hence, M U F| = |M|+ |F| =a' + n —2a" > B’, and therefore

n>a +p. (5.1)

Now let L be a minimum edge covering of G so that |L| = g'. Let H = G[L] be
the edge subgraph of G defined by L, and let My be a maximum matching in H.
Denote the set of M y-unsaturated vertices in A by UU. As L is an edge covering of
G, H is a spanning subgraph of G. Consequently, |L|—|My| = |L\My| = |U| =
n—2|My|andso |L| 4+ |Mg| = n. But since My is a matching in G, |My| < o'.
Thus,

n<|Ll+|My| < +a (5.2)
Inequalities (5.1) and (5.2) imply thata’ + 8" = n. O
Exercise 3.1. Determine the values of the parameters @, ¢’, f, and B’ for

L. Ky,
2. The Petersen graph P,
3. The Herschel graph (see Fig. 5.4).

Exercise 3.2. For any graph G with § > 0, prove thate < 8’ and o’ > f.

Exercise 3.3. Show that for a bipartite graph G, & 8 = m and that equality holds if
and only if (7 is complete.

5.4 Matchings and Factors

Definition 5.4.1. A matching of a graph G is (as given in Definition 5.3.1) a sel
of independent edges of G. If ¢ = wv is an edge of a matching M of G, the end
vertices u and v of e are said to be marched by M .

If M, and M, are matchings of G, the edge subgraph defined by M;AM,, the
symmetric difference of M, and M, is a subgraph H of G whose components are
paths or even cycles of G in which the edges alternate between M, and M.
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M

M MM

M M M M’ M M

H: M M’

@ & L2 s 4 L2 @
M M M M M M’

Fig. 5.5 Graphs for proof of Theorem 5.4.4

Definition 5.4.2. An M -augmenting path in G is a path in which the edges
alternate between E\M and M and its end vertices are M -unsaturated. An M -
alternating path in G is a path whose edges alternate between E\M and M.

Example 5.4.3. In the graph G of Fig.5.2, M, = {viva,vavs,vsv6}, My =
{viva, vave, vgvs}, and M3 = {viv4,vsvs} are matchings of G. Moreover,
G[M;AM;] is the even cycle (vivyvsvgvs). The path vavivgvgvsvy is an M-
augmenting path in G.

Maximum matchings have been characterized by Berge [19].

Theorem 5.4.4. A matching M of a graph G is maximum if and only if G has no
M -augmenting path.

Proof. Assume first that M is maximum. If G has an M -augmenting path P
VoViVvz2 ... v+ in which the edges alternate between E\M and M, then P has one
edge of E\ M more than that of M. Define

M' = (M U {vovi,vavs, ..., vava i D\{viva, vava, ... v v}

Clearly, M’ is a matching of G with |M'| = |M |+ 1, which is a contradiction since
M is a maximum matching of G.

Conversely, assume that G has no M -augmenting path. Then M must be
maximum. If not, there exists a matching M’ of G with [M'| > |M|. Let H be the
edge subgraph G[M A M'] defined by the symmetric difference of M and M’. Then
the components of H are paths or even cycles in which the edges alternate between
M and M. Since |M'| > | M|, at least one of the components of H must be a path
starting and ending with edges of M. But then such a path is an M-augmenting
path of G, contradicting the assumption (see Fig.5.5). U

Definition 5.4.5. A facror of a graph G is a spanning subgraph of G. A k-factor of
G is a factor of G that is k-regular. Thus, a 1-factor of G is a matching that saturates
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G Gy

Fig. 5.6 Graphs illustrating factorability

all the vertices of . For this reason, a 1-factor of G is called a perfect matching of
G. A 2-factor of G is a factor of G that is a disjoint union of cycles of G. A graph
G is k-factorable if G is an edge-disjoint union of k-factors of G.

Example 5.4.6. In Fig. 5.6, G, is 1-factorable and G is 2-factorable, whereas G,
has neither a 1-factor nor a 2-factor. The dotted, solid, and ordinary lines of G,
give the three distinct 1-factors, and the dotted and ordinary lines of G, give its two
distinct 2-factors.

Exercise 4.1. Give an example of a cubic graph having no 1-factor.
Exercise 4.2. Show that K, , and K>, are |-factorable.

Exercise 4.3. Show that the number of 1-factors of

(1) Kynisn!,
- s (2n)!
(i) Kaza is 55

Exercise 4.4. The n-cube O, is the graph whose vertices are binary n-tuples. Two
vertices of @, are adjacent if and only if they differ in exactly one place. Show
that Q, (n = 2) has a perfect matching. (The 3-cube (4 and the 4-cube Q4 are
displayed in Fig. 5.7.) It is easy to see that 0, =~ K;0K,0...OK; (n times).
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Fig. 5.7 (a) 3-cube @3 and a
(b) 4-cube Q4 {0,1,1) (1,1,1)

(0,0.1) ‘”

(0,007 (1,0,0)

The 3-cube Q3

The 4-cube Q4

Exercise 4.5. Show that the Petersen graph P is not 1-factorable. (Hint: Look at
the possible types of 1-factors of P.)

Exercise 4.6. Show that every tree has at most one perfect matching.

Exercise 4.7*%, Show that if a 2-edge-connected graph has a 1-factor, then it has at
least two distinct 1-factors.

Exercise 4.8. Show that the graph G4 of Fig. 5.6 is not 1-factorable.

An Application to Physics 5.4.7. In crystal physics, a crystal is represented by
a three-dimensional lattice in which each face corresponds to a two-dimensional
lattice. Each vertex of the lattice represents an atom of the crystal, and an edge
between two vertices represents the bond between the two corresponding atoms.

In crystallography, one is interested in obtaining an analytical expression for
certain surface properties of crystals consisting of diatomic molecules (also called
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dimers). For this, one must find the number of ways in which all the atoms of the
crystal can be paired off as molecules consisting of two atoms each. The problem
is clearly equivalent to that of finding the number of perfect matchings of the
corresponding two-dimensional lattice.

Two different dimer coverings (perfect matchings) of the lattice defined by the
graph G, are exhibited in Fig. 5.6—one in solid lines and the other in parallel lines.
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Chapter 6
Eulerian and Hamiltonian Graphs

6.1 Introduction

The study of Eulerian graphs was initiated in the 18th century and that of
Hamiltonian graphs in the 19th century. These graphs possess rich structures; hence,
their study is a very fertile field of research for graph theorists. In this chapter, we
present several structure theorems for these graphs.

6.2 Eulerian Graphs

Definition 6.2.1. An Euler trail in a graph G is a spanning trail in G that contains
all the edges of G. An Euler tour of G is a closed Euler trail of G. G is called
Eulerian (Fig.6.1a) if G has an Euler tour. It was Euler who first considered these
graphs, and hence their name.

It 1s clear that an Euler tour of G, if it exists, can be described from any vertex
of G. Clearly, every Eulerian graph is connected.

Euler showed in 1736 that the celebrated Kdnigsberg bridge problem has no
solution. The city of Konigsberg (now called Kaliningrad) has seven bridges linking
two islands A and B and the banks C and D of the Pregel (now called Pregalya)
River, as shown in Fig. 6.2,

The problem was to start from any one of the four land areas, take a stroll across
the seven bridges, and get back to the starting point without crossing any bridge a
second time. This problem can be converted into one concerning the graph obtained
by representing each land area by a vertex and each bridge by an edge. The resulting
graph H is the graph of Fig. 6.1b. The Kdnigsberg bridge problem will have a
solution provided that this graph H is Eulerian. But this is not the case since it
has vertices of odd degrees (see Theorem 6.2.2).

Eulerian graphs admit, among others, the following two elegant characteriza-
tions, Theorems 6.2.2 and 6.2.3%,

R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, 117
Universitext, DO1 10.1007/978-1-4614-4529-6_6,
@ Springer Science+Business Media New York 2012
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Fig. 6.1 (a) Eulerian graph a b
G (b) non-Eulerian graph H

G H

C (land)

Pregel river

D (land)

Fig. 6.2 Kdonigsberg bridge problem

Theorem 6.2.2. For a nontrivial connected graph G, the following statements are
equivalent:

(i) G is Eulerian.
(ii) The degree of each vertex of G is an even positive integer.
(iii) G is an edge-disjoint union of cycles.

Proof. (1) = (i1): Let T be an Euler tour of G described from some vertex vy €
V(G). If v € V(G), and v # v, then every time T enters v, it must move out of v
to get back to vy. Hence two edges incident with v are used during a visit to v, and
therefore, d(v) is even. At vy, every time 7" moves out of vy, it must get back to vy.
Consequently, d(vg) is also even. Thus, the degree of each vertex of G is even.

(ii) = (i1): As 8(G) = 2, G contains a cycle C; (Exercise 11.11 of Chap. 1). In
G\ E(C,), remove the isolated vertices if there are any. Let the resulting subgraph
of G be G,. If G, is nonempty, each vertex of G, is again of even positive degree.
Hence §(Gy) = 2, and so G contains a cycle C;. It follows that after a finite number,
say r, of steps, G\ E(C; U ... U C,) is totally disconnected. Then G is the edge-
disjoint union of the cycles Cy, Ca, ..., C;.

(1i1) = (i): Assume that G is an edge-disjoint union of cycles. Since any cycle
is Eulerian, G certainly contains an Eulerian subgraph. Let G, be a longest closed
trail in G. Then G| must be G. If not, let G» = G\ E(G,). Since G is an edge-
disjoint union of cycles, every vertex of G is of even degree > 2. Further, since G
is Eulerian, each vertex of () is of even degree > 2. Hence each vertex of G, is of
even degree. Since G3 is not totally disconnected and G is connected, G2 contains
a cycle C having a vertex v in common with G,. Describe the Euler tour of G,
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Fig. 6.3 Eulerian graph with P,
edge ¢ belonging to three
cycles

starting and ending at v and follow it by C. Then G, U C is a closed trail in G
longer than G,. This contradicts the choice of G, and so G; must be G. Hence G
is Eulerian. O

If G,. ..., G, are subgraphs of a graph G that are pairwise edge-disjoint and
their union is G, then this fact is denoted by writing G = G| & ... @& G,. Inthe
above equation, if G; = C;, acycle of G foreachi,then G = C; & ... C;. The
set of cycles § = {Cy, ... ,C,} is then called a cycle decomposition of G. Thus,
Theorem 6.2.2 implies that a connected graph is Eulerian if and only if it admits a
cycle decomposition.

There is yet another characterization of Eulerian graphs due to McKee [138] and
Toida [175]. Our proof is based on Fleischner [63,64].

Theorem 6.2.3*. A graph G is Eulerian if and only if each edge e of G belongs to
an odd number of cvcles of G.

For instance, in Fig. 6.3, e belongs to the three cycles Py Ue, P, Ue,and P; U e.

Proof. Denote by y, the number of cycles of G containing e. Assume that y, is odd
for each edge ¢ of G. Since a loop at any vertex v of G 1s in exactly one cycle of G
and contributes 2 to the degree of v in G, we may suppose that G is loopless.

Let § = {C), ..., C,} be the set of cycles of G. Replace each edge e of G
by y. parallel edges and replace ¢ in each of the y, cycles containing ¢ by one of
these parallel edges, making sure that none of the parallel edges is repeated. Let the
resulting graph be G and let the new set of cycles be §; = {C]U ..... C’E}. Clearly,
So 1s a cycle decomposition of Gg. Hence, by Theorem 6.2.2, Gy is Eulerian. But
then dg,(v) = 0 (mod 2) for each v € V(Gy) = V(G). Moreover, dg(v) =
dg,(v) = Y, (¥ — 1), where e is incident at v in G and hence dg(v) = 0 (mod 2),
Y. being odd for each ¢ € E(G). Thus, G is Eulerian.

Conversely, assume that GG is Eulerian. We proceed by inductiononn = |V(G)|.
If n = 1, each edge is a loop and hence belongs to exactly one cycle of G.
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Fig. 6.4 Graph for proof of Theorem 6.2.3

Assume the result for graphs with fewer than n (> 2) vertices. Let G be a graph
with n vertices. Let ¢ = xy be an edge of G and let A(e) be the multiplicity of e
inG.

The graph G o e obtained from G by contracting the edge e (cf. Sect. 4.4 of
Chap. 4) is also Eulerian. Denote by z the new vertex of (G oe obtained by identifying
the vertices x and y of G. The set of edges incident with z in G o ¢ is partitioned
into three subsets (see Fig. 6.4):

1. E.(x) = set of edges arising out of edges of & incident with x but not with y

2. E.(y) = set of edges arising out of edges of G incident with y but not with x

3. E.(xy) = setof A(e) — 1 loops of G o e corresponding to the edges parallel to
einG

Let k = |E.(x)|. Since G is Eulerian,
k + Ale) = dg(x) = 0(mod 2). (6.1)

Let I'y and I'(e;, ¢;) denote, respectively, the number of cycles in G o e
containing the edge f and the pair (¢;. e;) of edges. Since [V(G oe)| = n — 1,
and since G o e is Eulerian by the induction assumption, Iy is odd for each edge f
of G o e. Now, any cycle of G containing e either consists of e and an edge parallel
to e in G (and there are A(e) — 1 of them) or contains e, an edge e; of E.(x), and
an edge e;- of E.(y). These correspond in G o e, respectively, to a loop at z and to a
cycle containing the edges of G o e that correspond to the edges e; and €', of G. By
abuse of notation, we denote these corresponding edges of G o e also by ¢; and ¢/,
respectively. Moreover, any cycle of G o e containing an edge ¢; of £.(x) will also
contain either an edge ¢; of £:(x) or an edge ¢ of E-(y), but not both. A cycle of
the former type is counted once in [, and once in I, and these will not give rise
to cycles in G containing e. Thus,

e=Me)-D+ ) I,— ) Tlee).
e €E.(x) {g?éj}
i#]

gj.e;€E(x)
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Now, by the induction hypothesis, I',, = 1 (mod 2) for each ¢;, and I'(e;. e;)
I'(e;. e;) in the last sum on the right, and hence this latter sum is even. Thus, y,
(A(e) — 1) + k (mod 2) = 1 (mod 2) by relation (6.1).

amu

A consequence of Theorem 6.2.3 is a result of Bondy and Halberstam [26], which
gives yet another characterization of Eulerian graphs.

Corollary 6.2.4%. A graph is Eulerian if and only if it has an odd number of cycle
decompositions.

Proof. In one direction, the proof is trivial. If G has an odd number of cycle
decompositions, then it has at least one, and hence G is Eulerian.

Conversely, assume that G is Eulerian. Let ¢ € E(G) and let Cy, ..., C, be
the cycles containing e. By Theorem 6.2.3, r is odd. We proceed by induction on
m = |E(G)| with G Eulerian.

If G is just a cycle, then the result is true. Assume then that G is not a cycle. This
means that foreachi, 1 < i < r, by the induction assumption, G; = G — E(C,)
has an odd number, say s;, of cycle decompositions. (If G; is disconnected, apply
the induction assumption to each of the nontrivial components of G;.) The union of
each of these cycle decompositions of G; and C; yields a cycle decomposition of G.
Hence the number of cycle decompositions of G containing C, is5;, 1 <7 < r. Let
5(G) denote the number of cycle decompositions of G. Then

s(G) = Zs,— = r(mod?2) (sinces; = 1 (mod?2))

i=1

1 (mod 2).

Exercise 2.1. Find an Euler tour in the graph G below.

-

G
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Fig. 6.5 (a) Hamiltonian a b
graph: (b) non-Hamiltonian
but traceable graph

Exercise 2.2. Does there exist an Eulerian graph with

(1) An even number of vertices and an odd number of edges?
(ii)) An odd number of vertices and an even number of edges? Draw such a graph if
il exists.

Exercise 2.3. Prove that a connected graph is Eulerian if and only if each of its
blocks is Eulerian.

Exercise 2.4. If & is a connected graph with 2k(k > 0) vertices of odd degree,
show that £(G) can be partitioned into k open (i.e., not closed) trails.

Exercise 2.5. Prove that a connected graph is Eulerian if and only if each of its
edge cuts has an even number of edges.

6.3 Hamiltonian Graphs

Definition 6.3.1. A graph is called Hamiltonian if it has a spanning cycle (see
Fig. 6.5a). These graphs were first studied by Sir William Hamilton, a mathemati-
cian. A spanning cycle of a graph G, when it exists, is often called a Hamilton cycle
(or Hamiltonian cycle) of G.

Definition 6.3.2. A graph G is called rraceable if it has a spanning path of G (see
Fig.6.5b). A spanning path of G is also called a Hamilton path (or Hamiltonian
path) of G.

6.3.1 Hamilton’s “Around the World” Game

Hamilton introduced these graphs in 1859 through a game that used a solid
dodecahedron (Fig. 6.6). A dodecahedron has 20 vertices and 12 pentagonal faces.
At each vertex of the solid, a peg was attached. The vertices were marked
Amsterdam, Ann Arbor, Berlin, Budapest, Dublin, Edinburgh, Jerusalem, London,
Melbourne, Moscow, Novosibirsk, New York, Paris, Peking, Prague, Rio di Janeiro,
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Fig. 6.6 Solid dodecahedron
for Hamilton’s “Around the
World™ problem

Rome, San Francisco, Tokyo, and Warsaw. Further, a string was also provided. The
object of the game was to start from any one of the vertices and keep on attaching
the string to the pegs as we move from one vertex to another along a particular edge
with the condition that we have to get back to the starting city without visiting any
intermediate city more than once. In other words, the problem asks one to find a
Hamilton cycle in the graph of the dodecahedron (see Fig. 6.6). Hamilton solved
this problem as follows: When a traveler arrives at a city, he has the choice of taking
the edge to his night or left. Denote the choice of taking the edge to the right by R
and that of taking the edge to the left by L. Let 1 denote the operation of staying
where he is.

Define the product O, O, of two operations Q) and O as O, followed by ;.
For example, LR denotes going left first and then going right. Two sequences of
operations are equal if, after starting at a vertex, the two sequences lead to the same
vertex. The product defined above is associative but not commutative. Further, it is
clear (see Fig. 6.6) that

R=L=1
RL’R = LRL,
LR’L = RLR,
RIPR =17 and
LR3L = R?.

These relations give

1 = R° = R’R*> = (LR’L)R’ — (LR*)(LR?® = (LR®? = (LR*R)?
= (L(LR’L)RY = (L’R’LR)’ = (L*((LR’L)R)LR)* = (L*R’LRLR)*
= LLLRRRLRLRILLLRRRLRLR. (6.2)
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Fig. 6.7 A knight's tour in a chessboard

The last sequence of operations contains 20 operations and contains no partial
sequence equal to 1. Hence, this sequence must represent a Hamilton cycle. Thus,
starting from any vertex and following the sequence of operations (6.2), we do
indeed get a Hamilton cycle of the graph of Fig. 6.6.

Knight’s Tour in a Chessboard 6.3.3. The knight's tour problem is the problem of
determining a closed tour through all 64 squares of an 8 x 8 chessboard by a knight
with the condition that the knight does not visit any intermediate square more than
once. This is equivalent to finding a Hamilton cycle in the corresponding graph of
64 (= B x 8) vertices in which two vertices are adjacent if and only if the knight can
move from one vertex to the other following the rules of the chess game. Figure 6.7
displays a knight’s tour.

Even though Eulerian graphs admit an elegant characterization, no decent
characterization of Hamiltonian graphs i1s known as yet. In fact, it 1s one of
the most difficult unsolved problems in graph theory. (Actually, it is an NP-
complete problem; see reference [71].) Many sufficient conditions for a graph to be
Hamiltonian are known; however, none of them happens to be an elegant necessary
condition.

We begin with a necessary condition. Recall that w(H ) stands for the number of
components of the graph H.

Theorem 6.3.4. If G is Hamilionian, then for every nonempty proper subset § of
V.o(G-5) < |§|

Proof. Let C be a Hamilton cycle in G. Then, since C is a spanning subgraph of
G, (G —-8) <=w(C—-58).1f|§] =1, C — 8§ is a path, and therefore w(C — §) =
1 = |§|. The removal of a vertex from a path P results in one or two components,
according to whether the removed vertex is an end vertex or an internal vertex of P.
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Fig. 6.8 Theta graph

u

Hence, by induction, the number of components in C — § cannot exceed | §|. This

proves that (G — S) = w(C — §) = |S]. =

It follows directly from the definition of a Hamiltonian graph or from Theo-
rem 6.3.4 that any Hamiltonian graph must be 2-connected. [If G has a cut vertex v,
then taking S = {v}, we see that w(G — §) > [S|.] The converse, however, is not
true. For example, the theta graph of Fig. 6.8 is 2-connected but not Hamiltonian.
Here, P stands for a u-v path of any length > 2 containing neither x nor y.

Exercise 3.1. Show by means of an example that the condition in Theorem 6.3 .4 is
not sufficient for G to be Hamiltonian.

Exercise 3.2. Use Theorem 6.3.4 to show that the Herschel graph (shown in
Fig.5.4) is non-Hamiltonian.

Exercise 3.3. Do Exercise 3.2 by using Theorem 1.5.10 (characterization theorem
for bipartite graphs).

If a cubic graph G has a Hamilton cycle C, then G\ E(C) is a 1-factor of G.
Hence, for a cubic graph G to be Hamiltonian, G must have a 1-factor F such that
G\ E(F) is a Hamilton cycle of G. Now, the Petersen graph P (shown in Fig. 1.7)
has two different types of 1-factors (see Fig.6.9), and for any such 1-factor F of
P, P\ E(F) consists of two disjoint 5-cycles. Hence P is non-Hamiltonian.

Theorem 6.3.5 is a basic result due to Ore [ 150] which gives a sufficient condition
for a graph to be Hamiltonian.

Theorem 6.3.5 (Ore [150]). Let G be a simple graph with n
for every pair of nonadjacent vertices u, v of G, d(u) + d(v)
Hamiltonian.

3 vertices. If,

=
> n, then G is

Proof. Suppose that G satisfies the condition of the theorem, but G is not
Hamiltonian. Add edges to G (without adding vertices) and get a supergraph G*
of G such that G* is a maximal simple graph that satisfies the condition of the
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Fig. 6.9 Petersen graph. The solid edges form a 1-factor of P

Fig. 6.10 Hamilton path for proof of Theorem 6.3.5

theorem, but G* is non-Hamiltonian. Such a graph G* must exist since G is non-
Hamiltonian while the complete graph on V() is Hamiltonian. Hence, for any pair
u and v of nonadjacent vertices of G*, G* 4 uv must contain a Hamilton cycle C.
This cycle C would certainly contain the edge ¢ = uv. Then C — e is a Hamilton
pathu = vivavy ... v, = vof G* (see Fig. 6.10).

Now, if v; € N(u). vi—; € N(v); otherwise, vi vy ... Vi—] Vy V=1 Vu=2 ... Vig]
v; vi would be a Hamilton cycle in G*. Hence, for each vertex v; adjacent to u, the
vertex vi—; of V' — {v} is nonadjacent to v. But then

dg+(v) < (n — 1) — dg» (u).

This gives that dg+ (1) + dg* (v) < n — 1, and therefore dg (1) + dg (v) <n — 1,

a contradiction. O
Corollary 6.3.6 (Dirac [54]). If G is a simple graph withn = 3 and § = 5, then
(G is Hamiltonian. O

Corollary 6.3.7. Let G be a simple graph with n = 3 vertices. If d(u) + d(v) =
n — 1 for every pair of nonadjacent vertices u and v of G, then G is traceable.

Proof. Choose a new vertex w and let G’ be the graph G v {w}. Then each vertex
of G has its degree increased by one, and therefore in G', d(u) + d(v) = n + 1 for
every pair of nonadjacent vertices. Since |V(G’)| = n + 1, by Theorem 6.3.5, G' is
Hamiltonian. If C’ is a Hamilton cycle of G, then C' — w is a Hamilton path of G.
Thus, G is traceable. O
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Exercise 3.4. Show by means of an example that the conditions of Theorem 6.3.5
and its Corollary 6.3.6 are not necessary for a simple connected graph to be
Hamiltonian.

Exercise 3.5. Show that if a cubic graph G has a spanning closed trail, then G is
Hamiltonian.

Exercise 3.6. Prove that the n-cube 0, is Hamiltonian for every n = 2.
Exercise 3.7. Prove that the wheel W, is Hamiltonian for every n = 4.
Exercise 3.8. Prove that a simple k-regular graph on 2k — 1 vertices is Hamiltonian.

Exercise 3.9. For any vertex v of the Petersen graph P, show that P — v is
Hamiltonian. (A non-Hamiltonian graph G with this property, namely, for any
vertex v of G the subgraph G — v of G is Hamiltonian, is called a hypo-Hamiltonian
graph. In fact, P is the lowest-order graph with this property.)

Exercise 3.10. For any vertex v of the Petersen graph P, show that a Hamilton path
exists starting at v.

Exercise 3.11. If G = G(X,Y) is a bipartite Hamiltonian graph, show that
|X| = [¥].

Exercise 3.12. Let G be a simple graph on 2k vertices with 6(G) = k. Show that
G has a perfect matching.

Exercise 3.13. Prove that a simple graph of order n with n even and § > w has
a 3-factor. )

Bondy and Chvital [25] observed that the proof of Theorem 6.3.5 is essentially
based on the following result.

Theorem 6.3.8. Let G be a simple graph of order n > 3 vertices. Then G is
Hamiltonian if and only if G + uv is Hamiltonian for every pair of nonadjacent
vertices u and v with d(u) + d(v) = n.

The last result has been instrumental for Bondy and Chvital to define the closure
of a graph G.

Definition 6.3.9. The closure of a graph G. denoted cl(G), 1s defined to be that
supergraph of G obtained from (¢ by recursively joining pairs of nonadjacent
vertices whose degree sum 1s at least n until no such pair exists.

This recursive definition does not stipulate the order in which the new edges are
added. Hence, we must first show that the definition does not depend upon the order
of the newly added edges. Figure 6.11 explains the construction of cl(G).

Theorem 6.3.10. The closure cl(G) of a graph G is well defined.

Proof. Let G, and G» be two graphs obtained from G by recursively joining pairs
of nonadjacent vertices whose degree sum is at least n until no such pair exists. We
have to prove that G; = G;.
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Fig. 6.11 Closure of a graph
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Let {e), .... e,} and { fi. ..., f;} be the sets of new edges added to G in these
sequential orderings to get G, and G», respectively. We want to show that each e;
is some f; (and therefore belongs to GG2) and that each fi is some ¢; (and therefore

belongs to Gy). Let ¢; be the first edge in {e;, ..., e,} not belonging to G,. Then
ey, ..., ej—} are all in both G; and Gy, and uv = ¢; ¢ E(G;). Let H = G +
ey, .... ej—1}. Then H is a subgraph of both G| and G,. By the way cl(G) 1s
defined,

dy(u) +dy(v) = n,

and hence,
dg,(u) +dg,(v) = n.

But this is a contradiction since « and v are nonadjacent vertices of G2, and G
is a closure of G. Thus ¢; € E(G») for each i and similarly, f € E(G,) for
each k. O

An immediate consequence of Theorem 6.3.8 is the following.

Theorem 6.3.11. [If cl(G) is Hamiltonian, then G is Hamilionian.
Corollary 6.3.12. If cl(G) is complete, then G is Hamiltonian.
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Exercise 3.14. Determine the closure of the following graph.

We conclude this section with a result of Chvatal and Erdos [39].

Theorem 6.3.13 (Chvital and Erdos). If, for a simple 2-connected graph G,
« < K, then G is Hamilionian. («a is the independence number of G and k is the
connectivity of G.)

Proof. Suppose ¢ < « but G is not Hamiltonian. Let C : wgv; ... v,_; be a
longest cycle of . We fix this orientation on C. By Dirac’s theorem (Exercise 6.4
of Chap.3), p = k. Let v € V(G)\ V(C). Then by Menger’s theorem (see also
Exercise 6.3 of Chap. 3), there exist k internally disjoint paths Py, ..., P, from v
to C. Letv;,. v;,. .... v;, be the end vertices (with suffixes in the increasing order)
of these paths on C. No two of the consecutive vertices v;,, Vi,, ..., Vi,. ¥, can be
adjacent vertices of C, since otherwise we get a cycle of G longer than C. Hence,
between any two consecutive vertices of {v; , vi,, ..., vi_, v, }, there exists at least
one vertex of G. Let ui, be the vertex nextto v;, in the v; -v;, , path along C (see
Fig.6.12a).

We claim that {u;,, ..., w; } is an independent set of G. Suppose u;; is adjacent
tou;, . m > j (suffixes taken modulo «); then

B s Vg won Vi, PnTI VPV ns Ve e Bl

is a cycle of G longer than C, a contradiction.

Further, {v, u;, ..., u;_} 1s also an independent set of G. [Otherwise, vu;, €
E(G) for some m. See Fig. 6.12b. Then

Viy oo Vi P21

i v

e e

Vi ... me-l-] —

is a cycle longer than C, a contradiction.] But this implies that ¢ > «, a
contradiction to our hypothesis. Thus G is Hamiltonian. O

This theorem, although interesting, is not powerful in that for the cycle C,,, k = 2
while @ = | 4 | and hence increases with n,

A graph G with at least three vertices is Hamiltonian-connected if any two
vertices of G are connected by a Hamilton path in G. For example, forn > 3, K, is
Hamiltonian-connected, whereas forn = 4, C,, is not Hamiltonian-connected.

Theorem 6.3.14. If G is a simple graph withn = 3 vertices such that d(u)+d(v) =
n + 1 for every pair of nonadjacent vertices of G, then G is Hamiltonian-connected.
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Fig. 6.12 Graphs for proof a
of Theorem 6.3.13
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Proof. Let u and v be any two vertices of G. Our aim is to show that a Hamilton
path exists fromu tovin G.

Choose a new vertex w, and let G* = G U {wu, wv}. We claim that cl(G*) =
K, 4. First, the recursive addition of the pairs of nonadjacent vertices u and v of
G with d(u) + d(v) = n + 1 gives K,,. Further, each vertex of K, is of degree
n—1in K, and dg»(w) = 2. Hence, cl(G*) = K, . So by Corollary 6.3.12, G*
is Hamiltonian. Let C be a Hamilton cycle in G*. Then C — w is a Hamilton path
in G from u to v. O
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UNIT -4 Graph Colorings
7.1 Introduction

Graph thecry would not be what it is today if there had been no coloring
problems. In fact, a major portion of the 20th-century research in graph theory
has its origin in the four-color problem. (See Chap. 8 for details.)

In this chapter, we present the basic results concerning vertex colorings and
edge colorings of graphs. We present two important theorems on graph
colorings, namely. Brooks' theorem and Vizing's theorem. We also present a
brief discussion on “snarks” and Kirkman's schoolgirl problem. In addition, a
detailed description of the Mycielskian of a graph is also presented.

7.2 Vertex Colorings

7.2.1 Applications of Graph Coloring

We begin with a practical application of graph coloring known as the storage
problem. Suppose a university's Department of Chemistry wants to store its
chemicals. It is quite probable that some chemicals cause violent reactions
when brought together. Such chemicals are incompatible chemicals. For safe
storage, incompatible chemicals should be kept in distinct rooms. The easiest
way to accomplish this is, of course, to store one chemical in each room. But this
is certainly not the best way of doing it since we will be using more rooms than
are really needed (unless, of course, all the chemicals are mutually
incompatible!). So we ask: What is the minimum number of rooms required to
store all the chemicals so that in each room only compatible chemicals are
stored?

We convert the above storage problem into a problem in graphs. Form a

graph G = (V, E) by making V correspond bijectively to the set of available
chemicals and making v adjacent to v if and only if the chemicals corresponding

to vand R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory, 143

Universitext, DOl 10.1007/978-1 -4614-4529-6_7,
© Springer Science+Business Media New York 2012
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144 7 Graph Colorings

v are incompatible. Then, any set of compatible chemicals correspond to a set
of independent vertices of G. Thus, a safe storing of chemicals corresponds to a
partition of V into independent subsets of G. The cardinality of such a minimum
partition of V' is then the required number of rooms. The minimum cardinality 1s
called the chromatic number of the graph G.

Definition 7.2.1. The chromatic number y(G) of a graph G is the minimum
number of independent subsets that partition the vertex set of G. Any such minimum
partition is called a chromatic partition of V(G).

The storage problem just described is actually a vertex coloring problem of G.
A vertex coloring of G isamap f : V — S, where § is a set of distinct colors;
it is proper if adjacent vertices of G receive distinct colors of §. This means that
if uv € E(G), then f(u) # f(v). Thus, (G) is the minimum cardinality of §
for which there exists a proper vertex coloring of G by colors of §. Clearly, in any
proper vertex coloring of G, the vertices that receive the same color are independent.
The vertices that receive a particular color make up a color class. This allows an
equivalent way of defining the chromatic number.

Definition 7.2.2. The chromatic number of a graph G is the minimum number of
colors needed for a proper vertex coloring of G. G is k-chromatic if ¥(G) = k.

Definition 7.2.3. A k-coloring of a graph G is a vertex coloring of G that uses at
most k colors.

Definition 7.2.4. A graph G is said to be k-colorable if G admits a proper vertex
coloring using at most k colors.

In considering the chromatic number of a graph, only the adjacency of vertices
1s taken into account. Hence, multiple edges and loops may be discarded while
considering chromatic numbers, unless needed otherwise. As a consequence, we
may restrict ourselves to simple graphs when dealing with (vertex) chromatic
numbers.

It is clear that (K, ) = n. Further, y(G) = 2 if and only if G is bipartite having
at least one edge. In particular, y(7T') = 2 for any tree T" with at least one edge (since
any tree is bipartite). Further (see Fig. 7.1),

2 ifniseven
X(CH) — - : {?l)
3 ifmis odd.

Exercise 2.1. Prove y(G) = 2 if and only if G is a bipartite graph with at least one
edge.

Exercise 2.2. Determine the chromatic number of

(1) The Petersen graph

(ii) Wheel W, (see Sect. 1.7, Chap. 1)
(ii1) The Herschel graph (see Fig. 5.4)
(iv) The Grotzsch graph (see Fig. 7.6)
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%]
(=]

1 2 1 2 1 2
x(Ce) =2 y(C;) =3 A proper 4-coloring of

Fig. 7.1 Tlustration of proper vertex coloring

We next consider another application of graph coloring. Let § be a set of students.
Each student of § is to take a certain number of examinations for which he or she
has registered. Undoubtedly, the examination schedule must be such that all students
who have registered for a particular examination will take it at the same time.

Let PP be the set of examinations and for p € P, let 5(p) be the set of students
who have to take the exammation p. Our aim 1s to draw up an examination schedule
involving only the minimum number of days on the supposition that papers a@ and b
can be given on the same day provided they have no common candidate and that no
candidate shall have more than one examination on any day.

Form a graph G = G(P, E), where a,b € [P are adjacent if and only if
S(a) N S(b) # @. Then each proper vertex coloring of G yields an examination
schedule with the vertices in any color class representing the schedule on a particular
day. Thus, y(G) gives the minimum number of days required for the examination
schedule.

Exercise 2.3. Draw up an examination schedule involving the minimum number of
days for the following problem:

Set of students Examination subjects

8 Algebra, real analysis, and topology

83 Algebra, operations research, and complex analysis

83 Real analysis, functional analysis, and complex analysis
Sy Algebra, graph theory, and combinatorics

85 Combinatorics, topology, and functional analysis

b Operations research, graph theory, and coding theory

S5 Operations research, graph theory, and number theory
Sg Algebra, number theory, and coding theory

&g Algebra, operations research, and real analysis

Exercise 2.4. If G is k-regular, prove that y(G) = .“¢.

Theorem 7.2.5 gives upper and lower bounds for the chromatic number of a graph
G in terms of its independence number and order.
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Theorem 7.2.5. For any graph G with n vertices and independence number «,

S iEn-u+1,

Proof. There exists a chromatic partition {V;, Va,.... V:} of V. Since each V] is
independent, |V;| < @, 1 <i < y.Hence,n = }_F_, |V;| < a x, and this gives the
inequality on the left.

To prove the inequality on the right, consider a maximum independent set § of &
vertices. Then the subsets of 1\ § of cardinality | together with § yield a partition

of V into (n — @) + 1 independent subsets. O

Remark 7.2.6. Unfortunately, none of the above bounds is a good one. For example,
if G is the graph obtained by connecting C», with a disjoint K5, (r = 2), by an edge,

we haven = 4r, @ = r + 1, and y = 2r, and the above inequalities become -~ <

2r < 3r. For a simple graph G, the number 3 = y“(G) = x(G°), the chrorr;i'nic
number of G is the minimum number of subsets in a partition of V(G ) into subsets
each inducing a complete subgraph of G. Bounds on the sum and product of y(G)
and y“(G) were obtained by Nordhaus and Gaddum [ 148] (see also reference [93]),

as given in Theorem 7.2.7.

Theorem 7.2.7 (Nordhaus and Gaddum [148]). For any simple graph G.

. , 13>
2Jn < y+y <n+l,andn < y x' f(";— ) .

Proof. Let y(G) = k and let V3, V>, ..., Vi be the k color classes in a chromatic
partition of G. Then Zf=| |Vil] = n, and so maxi<i<k |Vi| = 7. Since each V
is an independent set of G, it induces a complete subgraph in G°. Hence, ¥ >
maxi<i<k |Vi|, and so y y = k ¥* = k o maxi<ij<k |Vi| = k o § = n. Further,
since the arithmetic mean of x and x° is greater than or equal to their geometric
mean, .r-t-Tx > JxxF = /n.Hence, y + x° = 2 ./n. This establishes both the
lower bounds.

To show that y + 3 < n + 1, we use inductiononn. Whenn =1, y = y* = 1,
and so we have equality in this case. So assume that y + y* = (n—=1)+ 1 =n
for all graphs G having n — 1 vertices, n = 2. Let A be any graph with n vertices,
and let v be any vertex of H. Then G = H — v is a graph with n — 1 vertices and
G = (H —v)* = H — v. By the induction assumption, y(G) + y(G“) < n.

Now y(H) < y(G) + 1 and y(H ) < y(G°) + 1. If either y(H) < x(G) or
2(H®) = x(G°), then y(H) + y(H°) = x(G) + x(G°) + 1 = n + 1. Suppose
then y(H) = y(G) + 1 and y(H®) = x(G°) + 1. y(H) = x(G) + 1 implies
that removal of v from H decreases the chromatic number, and hence dgy(v) =
x(G). [If dy(v) < x(G), then in any proper coloring of G with y(G) colors at
most y(G) — 1 colors would have been used to color the neighbors of v in G, and
hence v can be given one of the left-out colors, and therefore we have a coloring
of H with y(G) colors. Hence, y(H) = y(G), a contradiction.] For a similar
reason, y(H") = y(G°) + 1 implies thatn — 1 —dg(v) = dguc(v) = y(G°); thus,
x(G) + x(G°) <dy(v)+n—1-dy(v) = n — 1. This implies, however, that
X(H)+ y(H) = y(G) + x(G°)+2=n+1.
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Finally, applying the inequality /y y* = 4-4-5,_1- we get y ¢ = (5-%1:]1 <
()2, O
Note 7.2.8. Since the publication of Theorem 7.2.7, there had been similar results
for other graph parameters (see, for instance, [115] for the domination number y).
All these results have now come to be known as Nordhaus—-Gaddum inequalities,
with reference to the parameters in question.

Exercise 2.5. For a simple graph G, prove that y(G°) = a(G).

Exercise 2.6. Prove y(G) < £+ 1, where { is the length of a longest path in G. For
each positive integer €. give a graph G with chromatic number £ 4 1 and in which
any longest path has length £.

Exercise 2.7. Which numbers can be chromatic numbers of unicyclic graphs?
Draw a unicyclic graph on 15 vertices with A = 3 and having each of these numbers
as its chromatic number.

Exercise 2.8. If G is connected and m < n, show that y(G) < 3.

Exercise 2.9. Let G, be the graph defined by V(G,) = {(i,j) : 1 <i < j < n},
and E(G,) = {((i, j)(k.1)) : i < j =k <[}.Prove

(i) w(G,) = 2.
(ii) x(G,) = [log, n]. [Note that y(G,) — oc asn — oc.]

Exercise 2.10. Prove that y(GOH) = max{(y(G). y(H)).

Exercise 2.11. Prove (G x H) < min(x(G), y(H))) (A celebrated conjecture of
Hedetniemi [104] states that y(G x H) = min(x(G), x(H))).

7.3 Critical Graphs

Definition 7.3.1. A graph G is called critical if for every proper subgraph H of G,
x(H) < x(G). Equivalently, (G — ¢) < y(G) for each edge e of G. Also, G is
k-critical if it is k-chromatic and critical.

Remarks 7.3.2. If y(G) = 1, then G is either trivial or totally disconnected. Hence,
G is l-critical if and only if G is K. Again, y(G) = 2 implies that G is bipartite
and has at least one edge. Hence, G is 2-critical if and only if G is K. For an
odd cycle C, y(C) = 3, and if G contains an odd cycle C properly, G cannot be

3-critical.
Exercise 3.1. Prove that any critical graph is connected.

Exercise 3.2. Prove that for any graph G, y(G —v) = x(G) or y(G) — 1 for any
ve Viand y(G —e) = y(G)or y@(G) — 1 foranye € E.

Exercise 3.3. Show that if G is k-critical, y(G — v) = (G —e) = k — 1 for any
veVande € E.
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Exercise 3.4. [If y(G — ¢) < y(G) for any ¢ of G, G is sometimes called edge-
critical, and if y(G —v) < y(G) for any vertex v of G, G is called vertex-critical.]
Show that a nontrivial connected graph is vertex-critical if it is edge-critical.
Disprove the converse by a counterexample.

Exercise 3.5. Show that a graph is 3-critical if and only if it is an odd cycle. It is
clear that any k-chromatic graph contains a k-critical subgraph. (This is seen by
removing vertices and edges in succession, whenever possible, without diminishing
the chromatic number.)

Theorem 7.3.3. If G is k-critical, then (G) = k — 1.

Proof. Suppose 6(G) < k — 2. Let v be a vertex of minimum degree in G. Since G
is k-critical, y(G —v) = y(G)—1 = k — 1 (see Exercise 3.3). Hence, in any proper
(k — 1)-coloring of G — v, at most (k — 2) colors would have been used to color the
neighbors of v in G. Thus, there is at least one color, say ¢, that is left out of these
k — 1 colors. If v is given the color ¢, a proper (k — 1)-coloring of G is obtained.
This is impossible since ( is k-chromatic. Hence, §(G) > (k — 1). O

Corollary 7.3.4. Forany graph G. y(G) < 1+ A(G).

Proof. Let G be a k-chromatic graph, and let H be a k-critical subgraph of . Then
¥(H) = x(G) = k.By Theorem 7.3.3,8(H) = k — 1, and hence k < 1 +§(H) <
1+A(H) = 14+ AlG). O

Exercise 3.6. Give another proof of Corollary 7.3.4 by using induction on n =

IV(G)!.

Exercise 3.7. If y(G) = k. show that G contains at least & vertices each of degree
at least k — 1.

Exercise 3.8. Prove or disprove: If G is k-chromatic, then G contains a K.

Exercise 3.9. Prove: Any k (> 2)-critical graph contains a (k — 1)-critical
subgraph.

Exercise 3.10. For each of the graphs G of Exercise 2.2, find a critical subgraph H
of G with y(H) = x(G).

Exercise 3.11. Prove that the wheel W, = (5, v K| is a 4-critical graph for
each n = 2. Does a similar statement apply to W5, ?

Theorem 7.3.5. In a critical graph G, no vertex cut is a clique.

Proof. Suppose G is a k-critical graph and § is a vertex cut of G that is a clique
of G (i.e., a complete subgraph of G). Let H;, 1 < i < r, be the components of
G\S. and let G; = G[V(H;) U S]. Then each G; is a proper subgraph of G and
hence admits a proper (k — 1)-coloring. Since § is a clique, its vertices must receive
distinct colors in any proper (k — 1)-coloring of G, . Hence, by fixing the colors for
the vertices of S, and coloring for each i the remaining vertices of G; so as to give
a proper (k — 1)-coloring of G;, we obtain a proper (k — 1)-coloring of G. This
contradicts the fact that G is k-chromatic (see Fig. 7.2). O
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Fig. 7.2 G[S] ~ K,
(r=2)

Corollary 7.3.6. Every critical graph is a block.

Exercise 3.92.* Prove that every k-critical graph is (kK — 1)-edge connected
(Dirac [53]).

Exercise 3.13. Show by means of an example that criticality is essential in
Exercise 3.12; that is, a k-chromatic graph need not be (k — 1)-edge connected.

7.3.1 Brooks’ Theorem

We next consider Brooks' [31] theorem. Recall Corollary 7.3.4, which states that
#(G) <1+ A(G). If Gisanoddcycle, y(G) =3=1+2=1+ A(G),and if G
is a complete graph, say Ky, y(G) =k = 1+ (k— 1) = 1 + A(G). That these are
the only extremal families of graphs for which y(G) = 1 + A(G) is the assertion
of Brooks’ theorem.

Theorem 7.3.7 (Brooks’ theorem). Ifa connected graph G is neither an odd cycle
nor a complete graph, then x(G) < A(G).

Proof. If A(G) < 2, then G is either a path or a cycle. For a path G (other than
K, and K3), and for an even cycle G, x(G) = 2 = A(G). According to our
assumption, G is not an odd cycle. So let A(G) = 3.

The proof is by contradiction. Suppose the result is not true. Then there exists
a minimal graph G of maximum degree A(G) = A > 3 such that G is not A-
colorable, but for any vertex v of G, G — v is A-colorable,

Claim 1. Let v be any vertex of G. Then in any proper A-coloring of G — v, all the
A colors must be used for coloring the neighbors v in G. Otherwise, if some color
i is not represented in Ng(v), then v could be colored using 7, and this would give
a A-coloring of G, a contradiction to the choice of . Thus, G is a A-regular graph
satisfying Claim 1.

Forv e V(G),let N(v) = {v|,v2,...,va}. In a proper A-coloringof G—v = H,
let v; receive color i, 1 < i < A.Fori # j, let H; be the subgraph of H induced
by the vertices receiving the ith and jth colors.
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Fig. 7.3 Graphs for proof of
Theorem 7.3.7 (The numbers
inside the parentheses denote
the vertex colors)

Claim 2. v; and v; belong to the same component of H;;. Otherwise, the colors
i and j can be interchanged in the component of H;; that contains the vertex v;.
Such an interchange of colors once again yields a proper A-coloring of H. In this
new coloring, both v; and v ; receive the same color, namely, /, a contradiction to
Claim 1. This proves Claim 2.

Claim 3. If Ci; is the component of H;; containing v; and v;, then C;; is a path in
H;;. As before, Ny (v;) contains exactly one vertex of color j. Further, C;; cannot
contain a vertex, say y, of degree at least 3; for, if y 1s the first such vertex on a
vi —v; path in C, ; that has been colored, say, with i, then at least three neighbors
of y in C;; have the color j. Hence, we can recolor y in A with a color different
from both i and j, and in this new coloring of H, v; and v; would belong to distinct
components of H;; (see Fig.7.3a). (Note that by our choice of y, any v; — v; path
in H;; must contain y.) But this contradicts Claim 3.

Ciaim4. Cij N Cig = {vi} for j # k. Indeed, if w € C;; N Cix. w # v;, then
w is adjacent to two vertices of color j on C;; and two vertices of color k on Cj
(see Fig. 7.3b). Again, we can recolor w in H by giving a color different from the
colors of the neighbors of w in H. In this new coloring of H, v; and v, belong to
distinct components of H;;, a contradiction to Claim 2. This completes the proof of

Claim 4.
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a b c
1 1 1 1 1 2 1 /. }
2 2 2 3 3 2 2 1 3

Fig. 7.4 Different colorings of K35 —e

We are now in a position to complete the proof of the theorem. By hypothesis, G is
not complete. Hence, G has a vertex v, and a pair of nonadjacent vertices v; and v, in
Ng(v) (see Exercise 5.11, Chap. 1). Then the vi{ — v, path Cy2 in Hjpof H = G —v
contains a vertex y (# v;) adjacent to v;. Naturally, y would receive color 2. Since
A = 3, by Claim 1, there exists a vertex v3 € Ng(v). Now interchange colors 1
and 3 in the path Cy3 of H;3. This would result in a new coloring of H = G —v.
Denote the v;-v; path in A under this new coloring by C',-j- (see Fig.7.3c). Then
y € Cj; since vy receives color 3 in the new coloring (whereas y retains color 2).
Also, y € Cjp — vy C Cf,. Thus, y € C5; N C|,. This contradicts Claim 4 (since
¥ # va), and the proof is complete. O

7.3.2 Other Coloring Parameters

There are several other vertex coloring parameters of a graph G. We now mention
three of them. Let f be a k-coloring (not necessarily proper) of G, and let
(Ve Vs Vi) be the color classes of G induced by f. Coloring f is pseudo-
complete if between any two distinct color classes, there is at least one edge of G.
[ is complete if it is pseudocomplete and each V;, 1 < i < k, is an independent set
of G. Thus, x(G) is the minimum k for which G has a complete k-coloring f.

Definition 7.3.8. The achromatic number a(G) of a graph G is the maximum k for
which G has a complete k-coloring.

Definition 7.3.9. The pseudoachromatic number (G) of G is the maximum k for
which G has a pseudocomplete k-coloring.

Example 7.3.10. Figure 7.4 gives (a) a chromatic, (b) an achromatic, and (c) a
pseudoachromatic coloring of K33 — e.

It is clear that for any graph G, y(G) < a(G) = ¥(G).

Exercise 3.14. let G be a graph and H a subgraph of G. Prove that y(H) < y(G)
and ¥ (H) < y(G). Show by means of an example that a(H) < a(G) need not
always be true.

Scanned with CamScanner



152 7 Graph Colorings

Exercise 3.15. Prove

() (¥ —1) < 2m.
(ii) ¥(K. v K{) =a + 1.

From (i1) deduce that for any graph, ¥ <n —a + 1.

Exercise 3.16. If G has a complete coloring using k colors, prove that k <
14+ 14 8m
2

. (m = size of G).
Exercise 3.17. Prove that for a complete bipartite graph G, a(G) = 2.

Exercise 3.18. What is the minimum number of edges that a connected graph with
pseudoachromatic number vy can have? Construct one such tree.

Exercise 3.19. If G is a subgraph of H, prove that (G) < ¥ (H).
Exercise 3.20. Prove: Y(K,,) =n+ 1.

7.3.3 b-Colorings

Definition 7.3.11. A b-coloring of a graph G is a proper coloring with the
additional property that each color class contains a color-dominating vertex (c.d.v.),
that is, a vertex that has a neighbor in all the other color classes. The b-chromatic
number of G is the largest k such that G has a b-coloring using k colors; it is
denoted by b(G).

The concept of b-coloring was introduced by Irving and Manlove [111].

Exercise 3.21 guarantees the existence of the b-chromatic number for any graph
G and shows that y(G) < b(G). Note that b(K,;) = n while b(K,,, ,) = 2.

Exercise 3.21. Show that the chromatic coloring of a graph G is a b-coloring of G.

Exercise 3.22. Prove that K, , — F, n > 2, where F is a 1-factor of K, ,, has a b-
coloring using 2 colors and n colors but none with k colors for any k in2 < k < n.

Exercise 3.23. Prove b(G) = 1 + A(G). A better upper bound for b(G) is given
n the next exercise.

Exercise 3.24. Letd, < d» < ... < d, be the degree sequence of the graph G
with vertex set V = {v,..., whandd; = d(v;),1 <i < n.Let M(G) =
max{i : d;, =i —1,1<i <n}. Provethatb(G) < M(G). Show further that the
number of vertices of degree at least M(G) in G is at most M(G).

Exercise 3.25. Let O, be the hypercube of dimension p. Prove b(0) = b(0;)=2,
and b(Q3) = 4. [A result of Kouider and Mahéo [125] states that for p = 3,

b(Q,)=p+1]

We complete this section by presenting a result of Kratochvil, Tuza, and Voigt
[126] that characterizes graphs with b-chromatic number 2. Let G be a bipartite
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graph with bipartition (X, ¥). A vertex x € X (respectively, v € Y) is called a
Jfull vertex (or a charismatic vertex) of X (respectively, Y) if it is adjacent to all the
vertices of ¥ (respectively, X').

Theorem 7.3.12 ([126]). Let G be a nontrivial connected graph. Then b(G) = 2
if and only if G is bipartite and has a full vertex in each part of the bipartition.

Proof. Suppose G is bipartite and has a full vertex in each part, say x € X and
¥ € Y. Naturally, in any b-coloring, the color class containing x, say W), is a subset
of X and that containing y, say W5, is a subset of Y. If G has a third color class W,
disjoint from W) and W5, then W3 must have a c.d.v. adjacent to a vertex of W) and
a vertex of W5. This is impossible, as G is bipartite. Therefore, b(G) = 2.
Conversely, let b(G) = 2. Then y(G) = 2 and therefore G is bipartite. Let
(X, Y) be the bipartition of . Assume that GG does not have a full vertex in at least
one part, say, X. Let x; € X. As x; is not a full vertex, there exists a vertex y; € ¥ to
which it is not adjacent. Let X'} be the maximal subset of X such that Vy = X, U{y,}
is independent in G. Now choose a new vertex x2 € X\ X ;. Again, as X has no full
vertex, we can find a y, € Y\{y;} to which x, is not adjacent. Let X> be the
maximal subset of X\ X, such that V; = X, U/{y,} is independent in G. In this way,
all the vertices of X would be exhausted and let V|, V5. ..., ;. be the independent
sets thus formed. Also, let ¥, denote the set of uncovered vertices of Y, if any.
Since G is connected, G # (Vi U V;),and G # (Vi U Yo), i, j, 1 € {1,2,..., kj.
Hence, k = 2 when ¥y # @ and k = 3 when ¥y = @. Thus, the partition V =
VUl U. . .UV, U{V,, = Yy} has at least 3 parts. If each of these parts has ac.d.v.,
we get a contradiction to the fact that b(G) = 2. If not, assume that the class V} has
no ¢.d.v. Then for each vertex x of V;, there exists a color class V;, j # I, having no
neighbor of x. Then x could be moved to the class V;. In this way, the vertices in V}
can be moved to the other V;’s without disturbing independence. Let us call the new
clankes VY, Vs Wiigs Wipgonnn V.i:+1‘ If each of these color classes contains a
c.d.v., we get a contradiction as k = 3. Otherwise, argue as before and reduce the
number of color classes. As G 1s connected. successive reductions should end up in
at least three classes, contradicting the hypothesis that b(G) = 2. O

A description of several other coloring parameters can be found in Jensen and
Toft [116].

7.4 Homomorphisms and Colorings

Homomorphisms of graphs generalize the concept of graph colorings.

Definition 7.4.1. Let G and H be simple graphs. A homomorphism from G to H
isamap /' : V(G) — V(H) such that f(x) f(v) € E(H) whenever xy € E(G).
The map f is an isomorphism if f is bijective and xy € E(G) if and only if
f(x) f(y) € E(H).
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vertices S; and §; are adjacent if v;jv; € E(H ). This defines a natural isomorphism
Fodalf = H,

A consequence of the above remarks is the fact that a complete k-coloring
of G is just a homomorphism of G onto K;. Recall that both the chromatic
and achromatic colorings are complete colorings. We now establish the coloring
interpolation theorem for the complete coloring.

Theorem 7.4.7 (Interpolation theorem for complete coloring). If a graph G
admits a complete k-coloring and a complete l-coloring, then it admits a complete
i-coloring for every i between k and .

Proof. Let Ay, Aa,..., Ap and By, B,, ..., B; be the color partitions in the two
complete colorings. We assume without loss of generality that k < [. Clearly, it
suffices to construct a complete (k + 1)-coloring of G. For eachi = 0,1,2....,1.
let C; = ;<< B;- Let ®; denote the partition of ¥(G) by the nonempty sets of
the sequence B;. B;..... Bi: A —-C.A-Ci...., Ay — C;. The partition & has
parts Ay, As, ..., Aj; the partition &; has parts By, B>, ..., B; (since C; = V(G),
A; — C; = 0 for each j). Hence, G/@y =~ K; and G/®@; =~ K. Hence, there
must exist a first suffix j, 0 < j < [, such that G/®; is not k-colorable. By the
choice of j, this implies that G/@; is (k + 1)-colorable since we can simply color
B by the (k + 1)-st color, and hence by Lemma 7.4.2, G is (k + 1)-colorable. (Just
compose the two onto homomorphisms G — G/®; — Kj4.) O

Exercise 3.22 shows that an interpolation theorem similar to that of complete
coloring does not hold good for the b-coloring.

Exercise 4.1. Let f : G — H be a graph homomorphism and let x,y € V(G).
Provedy(x,y) = dg(x.y).

Exercise 4.2. Assume that there exists a homomorphism from G onto Cy, where k
is odd. Show that G must contain an odd cycle. Show by means of an example that
a similar statement need not hold good if k is even.

Exercise 4.3. Prove that there exists 2 homomorphism from Cy; 4 to Cy 4 if and
only if ] < k.

7.5 Triangle-Free Graphs

Definition 7.5.1. A graph G is triangle-free if G contains no K.

Remark 7.5.2. Triangle-free graphs cannot contain a K, kK = 3, either. It is obvious
that if a graph G contains a clique of size k, then y(G) > k. However, the
converse is not true. That is, if the chromatic number of G is large, then G need
not contain a clique of large size. The construction of triangle-free k-chromatic
graphs, fork > 3, was raised in the middle of the 20th century. In answer to this
question, Mycielski [144] developed an interesting graph transformation known as
the Mycielskian of a graph.
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Fig. 7.5 _U.I:KL_} + e)

Definition 7.5.3. Let G be a finite simple connected graph with vertex set V' =
V(G) and edge set E = E(G). The Mycielskian j4(G) of G is defined as follows:
The vertex set V(u(G)) of u(G) is the disjoint union V U V' U {u}, where V' =
ix' : x € V}andthe edgesetof u(G)is E(u(G)) = EU{x"y : xy € E}U{x'u :
x'e V')

We denote V(1(G)) by the triad {V, V', u}. For x € V, we call x" € V', the
twin of x in u(G), and vice versa, and u, the root of u(G). Figure 7.5 displays the
Mycielskian p(K; 5 + e).

Remark 7.5.4. The following facts about p(G ). where G is of order n and size m,
are obvious:

() V(G| =2n + 1.

(i1) Foreachv e V, d g (v) = 2dg(v).

(i) Foreachv' € V', dyi)(V') = dg(v) + 1.
[lVJ d,,{(;].(u) =Hn.

We now establish some basic results concerning the Mycielskian.
Theorem 7.5.5. y(u(G)) = y(G) + 1.

Proof. Assume that y(G) = k. Consider a proper (vertex) k-coloring ¢ of G using
the colors, say, 1,2, ... k. We now give a proper (k + 1)-coloring ¢’ for p(G). For
v € V, set ¢’(v) = e(v). For the twin v' € V', set ¢/(v') = ¢(v). For the root u
of u(G), set ¢’(u) = k + 1. Then ¢’ is a proper coloring for (G) using k + 1
colors and therefore y(u(G)) < k + 1. [¢ is proper because for any edge xy’,
c'(x) = e(x) # e(y) = '(v").] We now show that it is actually k + 1,

Suppose (£(G) has a proper k-coloring ¢” using the colors 1,2, ... k. Assume,
without loss of generality, that ¢ (u) = 1. Then forany v’ € V', ¢”(v') # 1. Recolor
each vertex of V that has been colored by 1 in ¢” by the color of its twin under ¢”.
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Fig. 7.6 The Gritzsch graph,
1(Cs)
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Then this gives a proper coloring of V using the k — 1 colors 2,3, ..., k. This is
impossible as y(G) = k. This proves that y(u(G)) =k + 1 = y(G) + 1. O

Theorem 7.5.6. If G triangle-free, then p(G) is also triangle-free.

Proof. Assume that G is triangle-free. If ;(G) contains a triangle, it can only be
of the form vwz', wherev € V, w € V, and 7' € V', so that vz’ and wZ’ are edges
of u(G). This means, by the definition of (), that vz and wz are edges of G and
hence vwz is a triangle in G, a contradiction. O

Theorem 7.5.7 (Mycielski [144]). For any positive integer p. there exists a
triangle-free graph with chromatic number p.

Proof. For p = 1, 2, the result is trivial. [For p = 1, take G = K, and for p = 2,
take G = K,. For p = 3, take G = p(K;). u(K,) = Cs is triangle-free and
#(Cs) = 3.] For p = 3, by Theorems7.5.5 and 7.5.6, the iterated Mycielskian
uP=2(K3) = pu(puP—*(K>)) is triangle-free and has chromatic number p. O

Remark 7.5.8. The graph p?(K>) = p(Cs) is the Grotzsch graph of Fig. 7.6.

Theorem 7.5.9. If G is critical, then so is ji(G).

Proof. Assume that G is k-critical. Since by Theorem 7.4.5, y(u(G)) = k + 1, we
have to show that p(G) s (k 4+ 1)-critical.
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Start with a (k + 1)-coloring ¢ with colors 1,2, ..., k + 1 of u(G) with vertex
set {V, V', u}.

We first show that y(u(G) — u) = k. Without loss of generality, assume that
c(u) = 1. Then 1 is not represented in V', Let § be the set of vertices receiving the
color 1 in V under c. Recolor each vertex v of S by the color of its twin v' € V.
This gives a proper coloring of (1(G)—u using k colors and hence y(p(G)—u) = k.
[Recall that adjacency of v and w in G implies adjacency of vw' and v'w in pu(G).]

Next remove a vertex v' of V' from p(G). Without loss of generality, assume
that ¢(u) = 1 and ¢(v') = 2. Now recolor the vertices of G — v by the k — 1 colors
3,....k, k +1 (this is possible as G is k-critical) and recolor the vertices of V' —/,
if necessary, by the colors of their twins in V' — v. Also, give color 1 to v. This
coloring of j£(G) —v' misses the color 2 and gives a proper k-coloring to i (G) —v'.

Lastly, we give a k-coloring to u(G) — v, v € V. Color the vertices of G — v by
1,2,....k—1so that the resulting coloring of G —v is proper. Let A be the subset of
(G — v whose vertices have received color | in this new coloring and A" C V' denote
the set of twins of the vertices in A. Now color the vertices of (V'\ A") — v/ by the
colors of their twins in G, the vertices of A" U {¥'} by color k, and u by color 1. This
coloring is a proper coloring of (G ) — v, which misses the color k + 1 in the list
{1,2,. .., k 4+ 1}. Thus, u(G) is (k 4+ 1)-critical. O

Remark 7.5.10. Apply Theorem 7.5.12 to observe that for each k = 1, there
exists a k-critical triangle-free graph. Not every k-critical graph is triangle-free;
for example, the complete graph Ky (k = 3) is k—critical but is not triangle-free.

Lemma 7.5.11. Let f : G — H be a graph isomorphism of G onto H. Then
f(Ng(x)) = Nu(f(x)). Further, G —x ~ H — f(x),and G — Ng[x] =~ H -
Nyl f(x)] under the restriction maps of | to the respective domains.

Proof. The proof follows from the definition of graph isomorphism. O

Theorem 7.5.12 ([13]). For connected graphs G and H, p(G) = p(H) if and
onlyif G =~ H.

Proof. If G ~ H, then trivially u(G) =~ p(H). So assume that G and H are
connected and that u(G) =~ p(H). When n = 2 or 3, the result is trivial. So
assume thatn = 4.If G is of ordern, then (G ) and p( /) are both of order 2n+1,
and so H is also of order n. Let f : p(G) — w(H) be the given isomorphism,
where V(p(G)) and V(u(H)) are given by the triads (Vi, V/,u1) and (V2, V], u2),
respectively.

We look at the possible images of the root u; of (G ) under f. Both u; and u; are
vertices of degree n. If f(u;) = uy, then by Lemma 7.5.11,G = u(G) — N|uy] =~
p(H)— Nu:) = H.

Next we claim that f(u;) € V5. Suppose f(u;) € V. Since dy)(f(uy)) =
d6)(u1) = n, it follows from the definition of the Mycielskian that in p(H), 5
neighbors of f(u;) belong to V5 while another 5 neighbors (the twins) belong to
V. (This forces n to be even.) These n neighbors of f(u;) form an independent
subset of u(H). Then H' = u(H) — Nym[f()] = u(G) — Ny lu] = G.
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Now if x € V»isadjacentto f(u;) in p(H ). then x is adjacent to f(u;)’, the twin of
f(u;) belonging to V) in p(H ). Further, dy( f(u;)’) = 1 = dg(v), where v € V]
(the vertex set of G) corresponds to f(u;)" in w(H). But then d,(G)(v) = 2, while
a’mg],(f(u}’) = % 4+ 1> 2, asn > 4. Hence, this case cannot arise.

Finally, suppose that f(u;) € V). Set f(u;) = y’. Then y, the twin of y’
in j(H), belongs to Va. As dy (1) = n., dym(y') = n. The vertex y’ has
n — 1 neighbors in V5, say, x1,x2.....X,-1. Then Ngy(v) = {x.x2,..., X511,
and hence y is also adjacent to x|, x;,...,x,_, in V,. Further, as N,)(u;) is
independent, N_MH][}J'] is also independent. Therefore, H = star K| ,—| consisting
of the edges yx;, yxs..... ¥Xu—1. Moreover, G = u(G) — Nfwy] = w(H) —
N[y'] = star K ,-; consisting of the edges yxj, yxj,..., yxl.q . Thus, G =

n—1-*

Kl.n—l ~ H. O

7.6 Edge Colorings of Graphs
7.6.1 The Timetable Problem

Suppose in a school there are r teachers, 7,,75...., T,, and s classes,
C.Cs,..., C;. Each teacher T; is expected to teach the class C; for p;; periods.
It is clear that during any particular period, no more than one teacher can handle
a particular class and no more than one class can be engaged by any teacher. Our
aim 1s to draw up a timetable for the day that requires only the minimum number of
periods. This problem is known as the “timetable problem.”

To convert this problem into a graph-theoretic one, we form the bipartite graph
G = G(T, C) with bipartition (7T, C), where T represents the set of teachers 7; and
C represents the set of classes C;. Further, T; is made adjacent to C; in G with p;;
parallel edges if and only if teacher T; is to handle class C; for p;; periods. Now
color the edges of G so that no two adjacent edges receive the same color. Then the
edges in a particular color class, that is, the edges in that color, form a matching in G
and correspond to a schedule of work for a particular period. Hence, the minimum
number of periods required is the minimum number of colors in an edge coloring
of G in which adjacent edges receive distinct colors; in other words, it is the edge-
chromatic number of G. We now present these notions as formal definitions.

Definition 7.6.1. An edge coloring of a loopless graph G is a function m
E(G) — §. where § is a set of distinct colors; it is proper if no two adjacent
edges receive the same color. Thus, a proper edge coloring @ of G is a function
x : E(G) — S such that w(e) # m(e’) whenever edges ¢ and ¢’ are adjacent in
G, and it is a proper k-edge coloring of G if | S| = k.

Definition 7.6.2. The minimum k for which a loopless graph G has a proper k-edge
coloring is called the edge-chromatic number or chromatic index of G. It is denoted
by ¥ (G). G is k-edge-chromatic if y'(G) = k.
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Further, if an edge uv is colored by color ¢, we say that ¢ is represented at both
w and v. If G has a proper k-edge coloring, E(G) is partitioned into k edge-disjoint
matchings.

It is clear that for any (loopless) graph G, ¥’ (G) = A(G) since the A(G) edges
incident at a vertex v of maximum degree A(G ) must all receive distinct colors. For
bipartite graphs, however, equality holds.

Theorem 7.6.3 (Konig). If G is a bipartite graph, y'(G) = A(G).

Proof. The proof is by induction on the size (i.e., number of edges) m of G. The
result is true for m = 1. Assume the result for bipartite graphs of size at most m — 1.
Let G have m edges. Lete = uv € E(G). Then G —e has [since A(G —¢) < A(G)]
a proper A-edge coloring, say c. Out of these A colors, suppose that one particular
color is not represented at both # and v. Then in this coloring the edge uv can be
colored with this color, and a proper A-edge coloring of G is obtained.

In the other case (that is, in the case in which each of the A colors is represented
either at w or atvin G — e), since the degrees of u and v in G — e are at most A — 1,
there exists a color out of the A colors that is not represented in G — e at u, and
similarly there exists a color not represented at v. Thus. if color j is not represented
at w in ¢, then j is represented at v in ¢, and if color i is not represented at v in ¢,
then i is represented at u in c. Since G is bipartite and u and v are not in the same
parts of the bipartition, there can exist no u-v path in G in which the colors alternate
between I and J.

Let P be a maximal path in G — e starting from i in which the colors of the
edges alternate between i and j. Interchange the colors 7 and j in P. This would
still yield a proper edge coloring of G — ¢ using the A colors in which color 7 is not
represented at both u and v. Now color the edge uv by the color i. This results in a
proper A-edge coloring of G. O

Exercise 6.1. Disprove the converse of Theorem 7.6.3 by a counterexample.
Next, we determine the chromatic index of the complete graphs.

n—1 ifniseven,

Theorem 7.6.4. 7' (K,) =
n if n is odd.

Proof. (Berge) Since K,, is regular of degree n — 1, y'(K,) =n — 1.

Case I. n is even. We show that x'(K,) = n — 1 by exhibiting a proper (n — 1)-
edge coloring of K,,. Label the n vertices of K, as 0, 1, ..., n—1. Draw a circle with
center at () and place the remaining n — 1 numbers on the circumference of the circle
so that they form a regular (n — 1)-gon (Fig. 7.7). Then the 5 edges (0. 1), (2,n—1),
(3.n=2),....(5.5 + 1) form a 1-factor of K,,. These 5 edges are the thick edges
of Fig.7.7. Rotation of these edges through the angle HZTJT| in succession gives (n—1)
edge-disjoint 1-factors of K,,. This would account for %(n — 1) edges and hence all
the edges of K,,. (Actually, the above construction displays a 1-factorization of K,
when n is even.) Each 1-factor can be assigned a distinct color. Thus, y'(K,) <
n — 1. This proves the result in Case 1.
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Fig. 7.7 Graph for proof
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Case 2. n s odd. Take a new vertex and make 1t adjacent to all the n vertices of K.
This gives K, +1. By Case 1, y’(K,+1) = n. The restriction of this edge coloring to
K, yields a proper n-edge coloring of K. Hence, y'(K,) < n. However, K, cannot
be edge colored properly with n — 1 colors. This is because the size of any matching
of K, can contain no more than % edges, and hence n — 1 matchings of K, can

3
{n—1)" nin—1)

contain no more than ~—— edges. But K, has ==— edges. Thus, y'(K,) = n. and
hence y'(K,) = n. O

Exercise 6.2. Show that a Hamiltonian cubic graph is 3-edge-chromatic.
Exercise 6.3. Show that the Petersen graph is 4-edge-chromatic.
Exercise 6.4. Show that the Herschel graph (see Fig. 5.4) is 4-edge-chromatic.

Exercise 6.5. Determine the edge-chromatic number of the Gritzsch graph
(Fig.7.6).

Exercise 6.6. Show that a simple cubic graph with a cut edge is 4-edge-chromatic.
Exercise 6.7. Describe a proper k-edge coloring of a k-regular bipartite graph.

Exercise 6.8. Show that any bipartite graph G of maximum degree A is a subgraph
of a A-regular bipartite graph. Hence, furnish an alternative proof of Theorem 7.6.3,
using Exercise 6.7,

Scanned with CamScanner



162 7 Graph Colorings

Fig. 7.8 Graph for proof of Theorem 7.6.5

7.6.2 Vizing’s Theorem

Although it is true that for any loopless graph G, y'(G) = A(G), it turns out that
for any simple graph G, ¥'(G) < 1 + A(G). This major result in edge coloring of
graphs was established by Vizing [183] and independently by Gupta [81].

Theorem 7.6.5 (Vizing-Gupta). For any simple graph G. A(G) < y'(G) < 1 +
A(G).

Proof. In a proper edge coloring of G, A(G), colors are to be used for the edges
incident at a vertex of maximum degree in G. Hence, ¥'(G) > A(G).

We now prove that y'(G) < 1 + A, where A = A(G).

If G 1s not (1 4+ A)-edge-colorable, choose a subgraph H of G with a maximum
possible number of edges such that H is (1 4+ A)-edge-colorable. We derive a
contradiction by showing that there exists a subgraph Hy of G that is (1 + A)-
edge-colorable and has one edge more than H.

By our assumption, G has an edge uvy ¢ E(H). Since d(u) < A, and 1 + A
colors are being used in H, there is a color ¢ that is not represented at u (i.e., not
used for any edge of H incident at u). For the same reason, there is a color ¢; not
represented at v;. (See Fig. 7.8, where the color not represented at a particular vertex
is enclosed in a circle and marked near the vertex.)

There must be an edge, say uv, of H, colored ¢, ; otherwise, uv, can be assigned
the color ¢y, and H U (uv;), which has one edge more than H, would have a proper
(1 + A)-edge coloring. Again, there is a color, say ¢», not represented at v». Then
as above, there is an edge wv; colored ¢, and there is a color, say c;. not represented
at vy.

In this way, we construct a sequence of edges {uvy, uvs. .. .. uvy ¢ such that color
c; is not represented at vertex v;, 1 < i < k, and the edge uv, 1 receives the color
ci, 1 < j <k —1(see Fig.7.8).

Suppose at some stage, say the rth stage, where 1 < r < k. ¢ (the missing
color at u) is not represented at v,. We then “cascade” (i.e., shift in order) the colors
Cls sy Cry from uva, uvs, ..., vy tO UV WV, ..., uv,_;. Under this new coloring,
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2

Fig. 7.9 Another graph for proof of Theorem 7.6.5

¢ is not represented both at u and at v, , and therefore we can color uv, with c¢. This
yields a proper (1 + A)-edge coloring to /' U (uv;), contradicting the choice of H.

Now we need to know why the sequence of edges uv;, 1 <i < k, had stopped.
There are two possible reasons. Either there 1s no edge incident to u that 1s colored
ck. or the color ¢, = ¢; forsome j < k—1 and so has already been represented at u.
Note that the sequence must stop at some finite stage since d(u) is finite; however,
it may as well stop before all the edges incident to u are exhausted.

If ¢; is not represented at u in H, then we can cascade as before so that uv; gets
color¢;, 1 <i <k — 1, and then color uv; with color ¢;. Once again, we have a
contradiction to our assumption on H.

Thus, we must have ¢, = ¢; for come j < k — 1. In this case, cascade the
colors ¢y, ¢2,...,¢; sothat uy; hascolor¢;, 1 <i < j, and leave uv; 4, uncolored
(Fig.7.9). Let § = (H U (uv)) —uv; ;. Then § and H have the same number of
edges.

Now consider S, , the subgraph of § defined by the edges of S with colors ¢
and ¢;. Clearly, each component of S, is either an even cycle or a path in which
the adjacent edges alternate with colors ¢ and ¢;.

Now, c is represented at each of the vertices vy, va,..., vk, and in particular at
vi+1 and vi. But ¢; is notrepresented at v; 4+ and v, since we have just moved ¢; to
uv;,and ¢; = ¢ is not represented at vi.. Hence in S, , the degrees of v; .| and vy
are both equal to 1. Moreover, ¢; is represented at u, but ¢ is not. Therefore, u also
has degree 1 in S,;. As each component of S, is either a path or an even cycle,
not all of u, v; 4. and v; can be in the same component of S, y (since a nontrivial
path has only two vertices of degree 1).

If u and v, 4 are in different components of Sf.rf . Interchange the colors ¢ and
¢j+1 in the component containing v;;. Then ¢ i1s not represented at both # and
Vj+1. and so we can color the edge uv; 4 with c. This gives a (14 A)-edge coloring
to the graph § U (uv; ;).

Scanned with CamScanner



164 7 Graph Colorings

Fig. 7.10 Graph illustrating
the generalized Vizing's
theorem

N & o

M

Suppose then u and v; 4 are in the same components of S, . Then, necessarily,
Vi 1s not in this component. Interchange ¢ and ¢; in the component containing vj.
In this case, further cascade the colors so that uv; hascolorc;, 1 <i =k — 1. Now
color wv; with color e.

Thus, we have extended our edge coloring of § with 1 + A colors to one more
edge of G. This contradiction proves that H = G, and thus y'(G) < 1 + A. O

Actually, Vizing proved a more general result than the one given above. Let G be
any loopless graph and let i denote the maximum number of edges joining two
vertices in G. Then the generalized Vizing's theorem states that A < ' < A + pu.
This theorem is the best possible in that there are graphs with y* = A + u. For
example, let G be the graph of Fig. 7.10. Since any two edges of G are adjacent,
¥ = m(G) = 3 = A + p. For a proof of the generalized Vizing's theorem, see
Yap [194].

Definition 7.6.6. Graphs for which y’ = A are called Class 1 graphs and those for
which y" = 1 4+ A are called Class 2 graphs.

Example 7.6.7. Bipartite graphs are of class 1 (see Theorem 7.6.3), whereas the
Petersen graph (see Exercise 6.3) and any simple cubic graph with a cut edge (see
Exercise 6.6) are of class 2.

For details relating to graphs of class 1 and class 2. see [62,194].

Exercise 6.9. Let G be a simple A-edge-chromatic critical graph [i.e., G is of class
1 and for every edge e of G. y'(G — e¢) < ¥'(G)). Prove that if uv € E(G), then
du)+d(v) = A+ 2,

We now return to the timetable problem. Following are some examples of such a
problem.

Problem 1. In a social health checkup scheme, specialist physicians are to visit
various health centers, Given the places each physician has to visit and also the time
interval of his or her visit, how can we fit in an itinerary? The assumption is that
each health center can accommodate only one doctor at a time.

Problem 2. Mobile laboratories are to visit various schools in a city. Given the
places each lab has to visit and also the time interval (period) of visits in a day,
how can we fit in a timetable for the laboratories?
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Problem 3. In an educational institution, as is well known, teachers have to instruct
various classes. Given the various classes each teacher has to instruct in a day, how
can we fit in a timetable? It is presumed that a teacher can teach only one class at a
time and that each class could be taught by only one teacher at a time!

We shall now discuss Problem3. Let x;.x2...... v, denote the teachers and
Yis ¥asai; ¥m the classes. Let 1;; denote the number of periods for which teacher
x; has to meet class y;. How can we draw up a timetable? If there are constraints
on the availability of classrooms, what 1s the minimum number of periods required
to implement a timetable? If the number of periods in a day is specified, what is the
minimum number of rooms required to implement the timetable? All these problems
could be analyzed by using a suitable graph.

Let G(T, C) be a bipartite graph formed with T = {x;,x5.....x,} and C =
5 TR | . Vg1 as the bipartition and in which there are 1;; parallel edges with
x; and y; as their common ends. If 7' denotes the set of teachers and C the
set of classrooms, a teaching assignment for a period determines a matching in
the bipartite graph G. Conversely, any matching in G corresponds to a teaching
assignment for one period. The edges of G could be partitioned into A edge-disjoint
matchings (see Theorem 7.6.3). Corresponding to the A matchings, a A-period
timetable can be drawn up.

Let N be the total number of periods to be taught by all teachers put together.
Then, on average, N /A classes are to be taught per period. Hence, at least [N/A]
rooms are necessary to implement a A-period timetable. We present below a method
for drawing up such a timetable. For this, we need Lemma 7.6.8.

Lemma 7.6.8. Let M and N be disjoint matchings of a graph G with |M | > |N|.
Then there are disjoint matchings M’ and N' of G with |M'| = |M| - 1 and
IN'| =|N|+ 1andwith M"UN’' = M U N.

Proof. Consider the subgraph H = G[M U N]. Each component of H is either an
even cycle or a path with edges alternating between M and N. Since |[M| > |N|.
some path component P of H must have its initial and terminal edges in M. Let
P = vpevieavy ... ey 11V 41-

Now set

M’ = (M\{ey,es,...,ex+1}) U {er.eq,...,e2:}

and
N’ = (N\{ez.e4,...,e2}) U {ej e3,..., €2r+1}-

Then M’ and N’ are disjoint matchings of G satisfying the conditions of the lemma.
O

Theorem 7.6.9. If G is a bipartite graph (with m edges), andifm = t = A, then
there exist t disjoint matchings My, M. . ... M, of G such that

E=MUM,U...UM,
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Fig. 7.11 Bipartite graph
corresponding to Problem |

and, forl <i <1,
m/t] < [M;| < [m/t].

(In other words, any connected bipartite graph G is equitably r-edge-colorable,
wherem =t = A)

Proof. By Theorem 7.6.3, y¥' = A. Hence, E(G) can be partitioned into A
matchings M/, M,,....M}. So for t = A, there exist disjoint matchings
M{M,,..., M/, where M/ =@ forA+1<1i < 1, and

E=MUMU...M,.

Now repeatedly apply Lemma 7.6.8 to pairs of matchings that differ by more
than one in size. This would eventually result in matchings M, M,,... . M, of G
satisfying the condition stated in the theorem. O

Coming back to our timetable problem, if the number of rooms available, say r,
is less than N/A (so that N/r > A), then the number of periods is to be
correspondingly increased. Hence, starting with an edge partition of E(G) into
matchings M|, M. ..., M, we apply Lemma 7.6.8 repeatedly to get an edge
partition of E(G) into disjoint matchings M. M,, .. .. My, . This partition gives
a [N/ r]-period timetable that uses r rooms.

Ilustration. The teaching assignments of five professors, xy, X2, X3, x4, X5, in the
mathematics department of a particular university are given by the following array:

I Year II Year 111 Year IV Year

M ¥z ¥a ¥y
X1 1 2 - -
X3 | 1 1 B
X3 1 - - 2
Xy = - 1 -
X3 = £ 1 1

The bipartite graph G corresponding to the above problem is shown in Fig. 7.11.
Each of the sets of edges drawn by the ordinary lines, dashed lines, and thick lines
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Table 7.1 Timetable Period
| Il 111
Professor: X ¥i Y2 y2

X3 Y2 ¥a Y1
X3 Y4 M Ya
x4 = e Lk
X5 Y3 ¥y =

gives a matching in G. The three matchings cover the edges of G. Hence, they can
be the basis of a three-period timetable. The corresponding timetable is givex in
Table 7.1.

In each period, four classes are to be met. Hence, at least four rooms are needed
to implement this timetable. Here A = 3 and N = 12. Consequently, G could be
covered by three matchings each containing | 12/3] or [12/3] edges, that is, exactly
four edges. This gives the edge partition

M’ = (M, M3, M3,
where

M| = {x1y1. X2y2, Xays, X5¥3},

M; = {x1¥2. X2Y3, X3¥1, X5V},
and

M; = {x1y2, X2)1, X3)4.X4)3}.

Now, take M" = {M|, M;, M;, M = @}, and apply Lemma7.6.8. This gives
an edge partition M = {M, M>, M3, M4}, where M, = {x1y1,X2y2, X34}, M2 =

{x1¥2, Xay3. X5y4}, M3 = {x2y1,X3¥4, X4y3}, and My = {xs5y3,x3)1,X1¥2}. The
above partition yields a four-period timetable using three rooms.
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7.9 Chromatic Polynomials

In 1946, Birkhoff and Lewis [23] introduced the chromatic polynomial of a graph
in their attempt to tackle the four-color problem (see Chap. 8) through algebraic
techniques.

For a graph G and a given set of A colors, the function f(G;A) is defined to
be the number of ways of (vertex) coloring G properly using the A colors. Hence,
f(G;2) = 0 when G has no proper A-coloring. Clearly, the minimum A for which
f(G;A) > 0is the chromatic number y(G) of G.

It is easy to see that f(K,;A) = A(A—1)...(A—n+ 1) for A = n. This is
because any vertex of K, can be colored by any one of the given A colors. After
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coloring a vertex of K, a second vertex of K, can be colored by any one of the
remaining (A — 1) colors, and so on. In particular, f(K3;4) = A(A — 1)(A — 2).
Also, f(K:A) = A".

Let e = uv be any edge of G. Recall (see Sect. 4.3, Chap. 4) that the graph G o e
is obtained from G by contracting the edge ¢. Theorem 7.9.1 presents a simple
reduction formula to compute f(G;A).

Theorem 7.9.1. Let G be any graph. Then f(G:A) = f(G —e; ) — f(Goe:d)
for any edge e of G.

Proof. f(G —e: A) denotes the number of proper colorings of G — e using A colors.
Hence, it is the sum of the number of proper colorings of G — e in which u and v
receive the same color and the number of proper colorings of G — e in which u and
v receive distinct colors. The former number is f(G c e: A), and the latter number
is f(G;A). O

Exercise 9.1. If G and H are disjoint graphs, show that

f(G U H;A) = f(G;X) f(H;}).

Theorem 7.9.1 could be used recursively to determine f(G;A) for graphs of small
size by taking the given graph on n vertices as G and successively deleting edges
until we end up with the totally disconnected graph K. It can also be determined
by taking the given graph as G — ¢ and recursively adding a new edge ¢ until we end
up with the complete graph K,,. For a fixed n, when m(G), the number of edges of
G is small, the first method is preferable, and when it is large, the second method is
preferable. These two methods are illustrated for the graph Cy. [Here the function
J(G: 4) is represented by the graph itself.]

Method 1 \

J(Cq: ) =

G

? X ¢ \

_>g«‘_>A
(V) - A
]

'

> / !

~
T

\ /
= AA-1)2=-{A2A=-D-AQA-1}-1(A=-1)(A-2)
= A% —4A% + 6A% - 34,
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Method 2
r' N
f{C4il] —
G—e
\,
4 ( s i
= [ +
(r
/
'} P oe{:

N
= f(Ks:A)+ f(Ks:d) + f(K3:2) + f(K2;))

= f(K&:2) +2f(K3: ) + f(K22)

2 — D -2~ 3) 4340 - DA - D 423~
= At — 413 + 642 -3

The function f(C4:A) computed above is a monic polynomial with integer
coefficients of degree n = 4 in which the coefficient of A = —4 = —m, the
constant term is zero, and the coefficients alternate in sign. That this is the case
with all such functions f(G;A) is the content of Theorem 7.9.2. For this reason,
the function f(G: A) is called the chromatic polynomial of the graph G.

Theorem 7.9.2. For a simple graph G of order n and size m, f(G: M) is a monic

polynomial of degree n in A with integer coefficients and constant term zero. In
addition, its coefficients alternate in sign and the coefficient of A" ™" is —m.

Proof. The proof is by inductionon m. If m = 0, G is K, and f(KS;A) = A",
andif m = 1, G is K> and f(K>;A) = A% — A, and the statement of the theorem
is trivially true in these cases. Suppose now that the theorem holds for all graphs
with fewer than m edges, where m > 2. Let G be any simple graph of order » and
size m, and let e be any edge of G. Both G — ¢ and G o e (after removal of multiple
edges, if necessary) are simple graphs with at most m — 1 edges, and hence, by the
induction hypothesis,

F(G—e;d)=2"—aod" ' + a 12" 2 — ...+ (=1)" a2,
and
f(Goe;:A) =A"' =A™ 2 4 ... + (=1)""2b,_,2,

where ag, ..., a, > by, ....b,_> are nonnegative integers (so that the coefficients
alternate in sign), and a; is the number of edges in G — e, which is m — 1. By
Theorem 7.9.1, f(G:A) = f(G —e;A) — f(G oe: A), and hence
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S(G;2) = A" — (ag + DA™ + (ay + b)A" 2 — . 4+ (=1)"(an—2 + bu-2)A.

Since ay + | = m, f(G:A) has all the stated properties. O

Theorem 7.9.3. A simple graph G on n vertices is a tree if and only if f(G; 1) =
A(A = 1)n 1,

Proof. Let G be a tree. We prove that f(G:A) = A(A — 1)""! by induction on n.
If n = 1, the result is trivial. So assume the result for trees with at most n — 1
vertices, n > 2. Let G be a tree with n vertices, and e be a pendent edge of G. By
Theorem7.9.1, f(G:A) = f(G—e;A)— f(Goe; A). Now, G —e is a forest with two
component trees of orders n—1 and 1. and hence f(G—e: 1) = (A(A—=1)""?)A (see
Exercise 9.1). Since G o ¢ is a tree with n — 1 vertices, f(Goe;A) = A(A—1)"2
Thus, fiG: ) =QAR -1 P -AA -1V F=1A-11"

Conversely, assume that G is a simple graph with f(G:1) = A(A — 1)1 =
A" —(n = DA™ 4+ ...+ (=1)""'A. Hence, by Theorem 7.9.2, G has n vertices
and n — 1 edges. Further, the last term, ( —l}”_ll. ensures that ¢ is connected (see
Exercise 9.2). Hence, G is a tree (see Theorem 4.2.4). O

Remark 7.9.4. Theorem 7.9.3 shows that the chromatic polynomial of a graph G
does not fix the graph uniquely up to isomorphism. For example, even though the
graphs K| 3 and P4 are not isomorphic, they have the same chromatic polynomial,
namely, A(A — 1)%.

Exercise 9.2. If G has & components, show that A% is a factor of f(G; ).

Exercise 9.3. Show that there exists no graph with the following polynomials as
chromatic polynomial (i) A% — 4A* + 8A% — 442 + A; (i) A* — 347 + A2 (iii)
AT—A°+1.

Exercise 9.4. Find a graph G whose chromatic polynomialis 1> —61*4+111°—642.

Exercise 9.5. Show that for the cycle C, of length n, f(C,:A) = (A —1)" +
(-1)"(A—-1),n = 3.

Exercise 9.6. Show that for any graph G, f(GVvK,;;1) = Af(G;A—1), and hence
prove that f(W,;A) = A(A —2)" 4+ (—=1)"A(A — 2).

Notes

A good reference for graph colorings is the book by Jensen and Toft [116]. The
book by Fiorini and Wilson [62] concentrates on edge colorings. Theorem 7.5.7
(Mycielskr’s theorem) has also been proved independently by Blanche Descartes
[50] as well as by Zykov [195]. For a complete description of graph homomor-
phisms, see [105].
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The proof of Brooks™ theorem given in this chapter is based on the proof given
by Fournier [67] (see also references [27] and [106]).

The term “snark™ was given to the snark graph by Martin Gardner after the
unusual creature that is described in Lewis Carroll’'s poem, The Hunting of the
Snark. A detailed account of the snarks, including their constructions, can be found
in the interesting book by Holton and Sheehan [106].
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UNIT -5
Planarity

8.1 Introduction

The study of planar and nonplanar graphs and, in particular, the several attempts
to solve the four-color conjecture have contributed a great deal to the growth of
graph theory. Actually, these efforts have been instrumental lo the development
of algebraic, topological, and computational techniques in graph theory.

In this chapter, we present some of the basic results on planar graphs. In
particular, the two important characterization theorems for planar graphs,
namely, Wagner's theorem (same as the Harary-Tutte theorem) and
Kuratowski's theorem, are presented. Moreover, the nonhamiltonicity of the
Tutte graph on 46 vertices (see Fig. 8.28 and also the front wrapper) is explained
in detail.

8.2 Planar and Nonplanar Graphs

Definition 8.2.1. A graph Gis planar if there exists a drawing of Gin the plane in
which no two edges intersect in a point other than a vertex of G. where each edge
is a Jordan arc (that is, a simple arc). Such a drawing of a planar graph Gis called
a plane representation of G. In this case, we also say that G has been embedded
in the plane. A plane graphis a planar graph that has already been embedded in
the plane.

Example 8.2.2. There exist planar as well as nonplanar graphs. In Fig. 8.1, a
planar graph and two of its plane representations are shown. Note that all trees
are planar as also are cycles and wheels. The Petersen graph is nonplanar (a
proof of this result is given later in this chapter.).

Before proceeding further, let us recall here the celebrated Jordan curve theorem.
If Jis any closed Jordan curve in the plane, the complement of J (with respect

R. Balakrishnan and K. Ranganathan. A Textbook of Graph Theory, 175
Universitext, DOl 10.1007/978-1 -4614-4529-6_8,
© Springer Science+Business Media New York 2012
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Planar graph K Two plane embeddings of K

Fig. 8.1 A planar graph with two plane embeddings

Fig. 8.2 Arc connecting
point x in int J with point y
inext J

to the plane) is partitioned into two disjoint open connected subsets of the plane,
one of which 1s bounded and the other unbounded. The bounded subset is called the
interior of J and is denoted by int J. The unbounded subset is called the exterior
of J and is denoted by ext J. The Jordan curve theorem (of topology) states that
if J is any closed Jordan curve in the plane, any arc joining a point of int J and a
point of ext J must intersect J at some point (see Fig. 8.2) (the proof of this result,
although intuitively obvious, is tedious).

Let G be a plane graph. Then the union of the edges (as Jordan arcs) of a cycle
C of G form a closed Jordan curve, which we also denote by C. A plane graph G
divides the rest of the plane (i.e., plane minus the edges and vertices of G), say =,
into one or more faces, which we define below. We define an equivalence relation ~
on .

Definition 8.2.3. We say that for points A and B of m, A ~ B if and only if there
exists a Jordan arc from A to B in m. Clearly, ~ is an equivalence relation on .
The equivalence classes of the above equivalence relation are called the faces of G.

Remark 8.2.4. 1. We claim that a connected graph is a tree if and only if it has only
one face. Indeed, since there are no cycles in a tree 7, the complement of a plane
embedding of T in the plane is connected (in the above sense), and hence a tree
has only one face. Conversely, it is clear that if a connected plane graph has only
one face, then it must be a tree.

2. Any plane graph has exactly one unbounded face. The unbounded face is also
referred to as the exterior face of the plane graph. All other faces, if any, are
bounded. Figure 8.3 represents a plane graph with seven faces.

The distinction between bounded and unbounded faces of a plane graph is only
superfluous, as there exists a plane representation G, of a plane graph G in which
any specified face of G| becomes the unbounded face, as is shown below. (This of
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Fig. 8.3 A plane graph with
seven faces

fr (exterior face)

Fig. 8.4 Stereographic
projection of the sphere §
from N

course means that there exists a plane representation of G such that any specified
vertex or edge belongs to the unbounded face.) We consider embeddings of a graph
on a sphere. A graph is embeddable on a sphere § if it can be drawn on the surface of
S so that its edges intersect only at its vertices. Such a drawing, if it exists, is called
an embedding of G on §. Embeddings on a sphere are called spherical embeddings.
What we have given here is only a naive definition. For a more rigorous description
of spherical embeddings, see [79].

To prove the next theorem, we need to recall the notion of stereographic
projection. Let § be a sphere resting on a plane P so that P is a tangent plane
to S. Let N be the “north pole,” the point on the sphere diametrically opposite the
point of contact of § and P. Let the straight line joining N and a point s of S\{N }
meet P at p. Then the mapping n : S\ {N} — P defined by 5n(s) = p is called the
stereographic projection of § from N (see Fig. 8.4).

Theorem 8.2.5. A graph is planar if and only if it is embeddable on a sphere.

Proof. Let a graph G be embeddable on a sphere and let G’ be a spherical
embedding of G. The image of G’ under the stereographic projection 7 of the
sphere from a point N of the sphere not on G’ is a plane representation of G on P.
Conversely, if G” is a plane embedding of G on a plane P, then the inverse of the
stereographic projection of G” on a sphere touching the plane P gives a spherical
embedding of G. O
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Fig. 8.5 Planc graph with

four faces ‘ﬂ
J2 f3
L

fa

Theorem 8.2.6. (a) Let G be a plane graph and [ be a face of G. Then there exists
a plane embedding of G in which [ is the exterior face.

(b) Let G be a planar graph. Then G can be embedded in the plane in such a
way that any specified vertex (or edge) belongs to the unbounded face of the
resulting plane graph.

Proof. (a) Letn be apointofint f. Let G' = o(G) be a spherical embedding of G
and let N = o(n). Let 5 be the stereographic projection of the sphere with N
as the north pole. Then the map no (o followed by 1) gives a plane embedding
of G that maps f onto the exterior face of the plane representation (no)(G)
of G.

(b) Let f be a face containing the specified vertex (respectively, edge) in a plane
representation of . Now, by part (a) of the theorem, there exists a plane
embedding of G in which f becomes the exterior face. The specified veriex
(respectively, edge) then becomes a vertex (respectively, edge) of the new
unbounded face. O

Remark 8.2.7. 1. Let G be a connected plane graph. Each edge of G belongs to one
or two faces of G. A cut edge of G belongs to exactly one face. and conversely,
if an edge belongs to exactly one face of G, it must be a cut edge of G. An edge
of G that is not a cut edge belongs to exactly two faces and conversely.

2. The union of the vertices and edges of G incident with a face f of G is called the
boundary of f and is denoted by b( f). The vertices and edges of a plane graph
G belonging to the boundary of a face of G are said to be incident with that face.
If G is connected, the boundary of each face is a closed walk in which each cut
edge of G is traversed twice. When there are no cut edges, the boundary of each
face of G is a closed trail in G. (See, for instance, face f; of Fig. 8.3.) However,
if G is a disconnected plane graph, then the edges and the vertices incident with
the exterior face will not define a trail.

3. The number of edges incident with a face f is defined as the degree of f. In
counting the degree of a face, a cut edge is counted twice. Thus, each edge of a
plane graph G contributes two to the sum of the degrees of the faces. It follows

that if F denotes the set of faces of a plane graph G, then % d(f) = 2m(G),
feF
where d( f) denotes the degree of the face f.
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InFig.8.5,d(f1) =3, d(f2) =9, d(f;) = 6,and d(f;) = 8.
Theorem 8.2.8 connects the planarity of G with the planarity of its blocks.

Theorem 8.2.8. A graph G is planar if and only if each of its blocks is planar.

Proof. If G is planar, then each of its blocks is planar, since a subgraph of a
planar graph is planar. Conversely, suppose that each block of G is planar. We now
use induction on the number of blocks of G to prove the result. Without loss of
generality, we assume that G is connected. If G has only one block, then G is
planar.

Now suppose that G has k planar blocks and that the result is true for all
connected graphs having (k — 1) planar blocks. Choose any end block By of G and
delete from G all the vertices of Bj except the unique cut vertex, say vg, of G in By.
The resulting connected subgraph G’ of G contains (k — 1) planar blocks. Hence, by
the induction hypothesis, G’ is planar. Let G’ be a plane embedding of G’ such that
vp belongs to the boundary of the unbounded face, say f' (refer to Theorem 8.2.6).
Let Bobea plane embedding of By in f' so that vy is in the boundary of the exterior
face of E‘n. Then (by the identification of vy in the two embeddings), G’ U ﬁn is a
plane embedding of G. O

Remark 8.2.9. In testing for the planarity of a graph G, one may delete multiple
edges and loops of G, if any. This is so because if a graph H is nonplanar, the
removal of loops and parallel edges of H results in a subgraph of H, which is also
nonplanar. Also, by Theorem 8.2.8, G can be assumed to be a block and hence 2-
connected. If G has a vertex of degree 2, say vg, and vvgv' is the path formed by
the two edges incident with vy, contraction of vvy and deletion of the multiple edges
(if any) thus formed again result in a planar graph. Let G’ be the graph obtained
from G by performing such contractions successively at vertices of degree 2 and
deleting the resulting multiple edges. Then G is planar if and only if G’ is planar.
From these observations, it 1s clear that in designing a planarity algorithm (i.e., an
algorithm to test planarity), it suffices to consider only 2-connected simple graphs
with minimum degree at least 3. (For a planarity algorithm, see [49].)

Exercise 2.1. Show that every graph with at most three cycles is planar.

Exercise 2.2. Find a simple graph G with degree sequence (4, 4, 3, 3, 3, 3)
such that

(a) G is planar.
(b) G is nonplanar.

Exercise 2.3. Redraw the following planar graph so that the face f becomes the
exterior face.
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8.3 Euler Formula and Its Consequences

We have noted that a planar graph may have more than one plane representation
(see Fig. 8.1). A natural question that would arise is whether the number of faces is
the same in each such representation. The answer to this question is provided by the
Euler formula.

Theorem 8.3.1 (Euler formula). For a connected plane graph G, n —m + {] =2,
where n, m, and E denote the number of vertices, edges, and faces of G, respectively.

Proof. We apply induction on |,

IfE: l,thenGisatreeandm = n — 1. Hence.n — m +[]'= 2.

Now assume that the result is true for all plane graphs with G— 1 faces, {I = 2,
and suppose that G has | faces. Since [ = 2, G is not a tree, and hence contains a
cycle C. Let ¢ be an edge of C. Then ¢ belongs to exactly two faces, say f; and
J2, of G and the deletion of e from G results in the formation of a single face from
fi and f> (see Fig. 8.5). Also, since e is not a cut edge of G, G — e is connected.
Further, the number of faces of G — e is E — 1. So applying induction to G — e, we
getn—(m—1)+ (E— 1) = 2. and this implies that n — m +{7' = 2. This completes
the proof of the theorem. O

Below are some of the consequences of the Euler formula.

Corollary 8.3.2. All plane embeddings of a given planar graph have the same
number of faces.

Proof. Since E = mm —n + 2, the number of faces depends only on n and m, and not
on the particular embedding. O

Corollary 8.3.3. If G is a simple planar graph with at least three vertices, then
m < 3n—6.

Proof. Without loss of generality, we can assume that G is a simple connected plane
graph. Since G is simple and n = 3, each face of G has degree at least 3. Hence,
if F denotes the set of faces of G, }_ . zd(f) = 3[. But > reFd(f) = 2m.
Consequently, 2m = 3[, so that [ < %
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i
This givesm < 3n — 6. O

By the Euler formula, m = n +E—2. NUWE = e implies thatm < n+ (Ef“:‘j‘} =2

The above result is not valid if n = 1 or 2. Also, the condition of Corollary 8.3.3
is not sufficient for the planarity of a simple connected graph as the Petersen graph
shows. For the Petersen graph, m = 15, n = 10, and hence m =< 3n — 6, but the
graph is not planar (see Corollary 8.3.7 below).

Example 8.3.4. Show that the complement of a simple planar graph with 11 vertices
Is nonplanar.

Solution. Let G be a simple planar graph with n(G) = 11. Since G is planar,
m(G) < 3n— 6 = 27. If G were also planar, then m(G®) < 3n — 6 = 27.
On the one hand, m(G) + m(G¢) < 27 4+ 27 = 54, whereas, on the other hand,
m(G) 4+ m(G) =m(K;;) = (12'} = 55. Hence, we arrive at a contradiction. This
contradiction proves that G is nonplanar. O

Corollary 8.3.5. For any simple planar graph G, 6(G) < 5.

Proof. If n < 6, then A(G) < 5. Hence 6(G) < A(G) < 5, proving the result
for such graphs. So assume that n > 7. By Corollary 8.3.3, m < 3n — 6. Now,
én < ErEl'l(}']dG(v) =2m < 2(3n — 6) = 6n — 12. Hence n(d — 6) < —12.
Consequently, 6 — 6 is negative, implying that § < 5. O

Recall that the girth of a graph G is the length of a shortest cycle in G.

Theorem 8.3.6. If the girth k of a connected plane graph G is at least 3, then

kin—2)
m =3

Proof. Let F denote the set of faces and E as before, denote the number of faces
of G.If f € F,thend(f) = k. Since 2Zm = Z_re}' d(f), we get 2m > A&
By Theorem 8.3.1, E = 2 —n + m. Hence, 2m > k(2 — n 4+ m), implying that

m(k —2) < k(n —2). Thus, m < 52=2 O

Corollary 8.3.7. The Petersen graph P is nonplanar.

Proof. The girth of the Petersen graph P is 5. n(P) = 10, and m(P) = 15. Hence,
if P were planar, 15 < ﬂ%ﬂ which is not true. Hence, P is nonplanar. O

Exercise 3.1. Show that every simple bipartite cubic planar graph contains a Cj.

Exercise 3.2. A nonplanar graph G is called planar-vertex-critical if G — v 1s
planar for every vertex v of GG. Prove that a planar-vertex-critical graph must be
2-connected.
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Exercise 3.3. Verify Euler’s formula for the plane graph P.

Exercise 3.4. Let G be a simple plane cubic graph having eight faces. Determine
n(G). Draw two such graphs that are nonisomorphic.

Exercise 3.5. Prove that if G is a simple connected planar bipartite graph, then
m < 2n—4, wheren > 3.

Exercise 3.6. Prove that a simple planar graph (with at least four vertices) has at
least four vertices each of degree 5 at most.

Exercise 3.7. If G is a nonplanar graph, show that it has either five vertices of
degree at least 4, or six vertices of degree at least 3.

Exercise 3.8. Prove that a simple planar graph with minimum degree at least five
contains at least 12 vertices. Give an example of a simple planar graph on 12 vertices
with minimum degree 5.

Exercise 3.9. Show that there is no 6-connected planar graph.

Exercise 3.10. Let G be a plane graph of order n and size m in which every face is

bounded by a k-cycle. Show that m = “‘i"_;]? !

Definition 8.3.8. A graph G is maximal planar if G is planar, but for any pair of
nonadjacent vertices u and v of &, G <+ wuv is nonplanar.

Remark 8.3.9. Any planar graph is a spanning subgraph of a maximal planar
graph. Indeed, if G is a plane embedding of a planar graph G with at least three
vertices, and if e = wv is a cut edge of G embedded in a face f of G. it is clear
that there exists a vertex w on the boundary of f such that the edge uw or vw can be
drawn in f so that either G + (vw) or G + (uw) is also a plane graph (see Fig. 8.6a).
Further, if Cy is any cycle bounding a face f; of a plane graph H, then edges can be
drawn in int C; without crossing each other so that f; is divided into triangles (see
Fig. 8.6b).
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Fig. 8.6 Procedure to get maximal planar graphs

Definition 8.3.10. A plane triangulation is a plane graph in which each of its faces
is bounded by a triangle. A plane triangulation of a plane graph G is a plane
triangulation / such that G is a spanning subgraph of H.

Remark 8.3.11. Remark 8.3.9 shows that a plane embedding of a simple maximal
planar graph 1s a plane triangulation.

Note that any simple plane graph is a subgraph of a simple maximal plane graph and
hence is a spanning subgraph of some plane triangulation. Thus, to any simple plane
graph G that is not already a plane triangulation, we can add a set of new edges to
obtain a plane triangulation. The set of new edges thus added need not be unique.

Figure 8.7a 1s a simple plane graph G and Fig. 8.7b is a plane triangulation of G;
Fig.8.7c is a plane triangulation of G isomorphic to the graph of Fig. 8.7b having
only straight-line edges. (A result of Fary [60] states that every simple planar graph
has a plane embedding in which each edge is a straight line. )

Exercise 3.11. Embed the 3-cube (3 (see Exercise 4.4 of Chap.3) in a maximal
planar graph having the same vertex set as ;. Count the number of new edges
added.

Exercise 3.12. Prove that for a simple maximal planar graph on n > 3 vertices,
m = 3n—6.

Exercise 3.13. Use Exercise 3.12 to show that for any simple planar graph, m <
3n — 6.

Exercise 3.14. Show that every plane triangulation of order n = 4 is 3-connected.

Exercise 3.15. Let G be a maximal planar graph with n > 4. Let n; denote the
number of vertices of degree i in G. Then prove that 3n3 + 2ny +ns = 12 +n; +
2ng 4+ 3ng 4+ 4ny0 + .... (Hint: Use the factthatn = n3 +ny4+ns+ng+....)

Exercise 3.16. Generalize the Euler formula for disconnected plane graphs.

Scanned with CamScanner



184 8  Planarity

v
Ug I
Uy

Fig. 8.7 (a) Graph G and (h), (c) are plane triangulations of G

8.4 Ksand K33 are Nonplanar Graphs

In this section we prove that Ks and K; 3 are nonplanar. These two graphs are basic
in Kuratowski’s characterization of planar graphs (see Theorem 8.7.5 given later
in this chapter). For this reason, they are often referred to as the two Kuratowski
graphs.

Theorem 8.4.1. K5 is nonplanar.

First proof. This proof uses the Jordan curve theorem. Assume the contrary,
namely, Ks is planar. Let vy, vs,v3,v4, and vs be the vertices of K5 in a plane
representation of Ks. The cycle C = vyvavavav) (as a closed Jordan curve) divides
the plane into two faces, namely, the interior and the exterior of C. The vertex vs
must belong either to int C' or to ext C. Suppose that vs belongs to int C (a similar
proof holds if vs belongs to ext C), Draw the edges vsvy, vsva, vsvs, and vsvy in int
C. Now there remain two more edges v;v; and vyv4 to be drawn. None of these can
be drawn in int C, since it is assumed that K’ is planar. Thus, vv; lies inext C. Then
one of v, and v4 belongs to the interior of the closed Jordan curve Cy = vyvsvyv; and
the other to its exterior (see Fig. 8.8). Hence, v,v4 cannot be drawn without violating
planarity. O
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Fig. 8.8 Graph for first proof
of Theorem 8.4.1

Fig. 8.9 Graph for first proof Cl
of Theorem 8.4.3

ug

C o

Remark 8.4.2. The first proof of Theorem 8.4.1 shows that all the edges of K
except one can be drawn in the plane without violating planarity. Hence for any
edge e of K5, K5 — ¢ is planar.

Second proof. 1f Ks were planar, it follows from Theorem 8.3.6 that 10 < 3{ {35:22}',
which 1s not true. Hence Ks 1s nonplanar. 0

Theorem 8.4.3. K1 is nonplanar.

First proof. The proof is by the use of the Jordan curve theorem. Suppose that K 3
is planar. Let U = {u;, uz,u3} and V = {v|, vo, v3} be the bipartition of K33 in a
plane representation of the graph. Consider the cycle C = wyviuavausviu,. Since
the graph is assumed to be planar, the edge u,v, must lie either in the interior of C
or in its exterior. For the sake of definiteness, assume that it lies in int C (a similar
proof holds if one assumes that the edge u;v; lies in ext C ). Two more edges remain
to be drawn, namely, u>v3 and usv;. None of these can be drawn in int C without
crossing the edge u;v,. Hence, both of them are to be drawn in ext C. Now draw
vy in ext C. Then one of v| and u; belongs to the interior of the closed Jordan
curve C; = wuyvouyvauy and the other to the exterior of C, (see Fig. 8.9). Hence,
the edge v,u3 cannot be drawn without violating planarity. This shows that K 5 18
nonplanar. O
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Second proof. Suppose K3 3 is planar. Let [ be the number of faces of G = K 5 in
a plane embedding of G and F, the set of faces of G. As the girth of K33 is 4, we

4
have m = %Zfe}—dlff] ol Zg. By Theorem 8.3.1,n —m +E: 2. For K33,

n==6,andm = 9. Hence,{]' =2+4+m—n = 5.Thus, 9 = 2.5 = 10, a contradiction.
O

=r—=

Exercise 4.1. Give yet another proof of Theorem 8.4.3.

Exercise 4.2. Find the maximum number of edges in a planar complete tripartite
graph with each part of size at least 2.

Remark 8.4.4. As in the case of K5, for any edge e of K13. K33 — e is planar.
Observe that the graphs K5 and K4 ; have some features in common.

Both are regular graphs.

The removal of a vertex or an edge from each graph results in a planar graph.
Contraction of an edge results in a planar graph.

K5 is a nonplanar graph with the smallest number of vertices, whereas K3 is a
nonplanar graph with the smallest number of edges. (Hence, any nonplanar graph
must have at least five vertices and nine edges.)

Eal S o e

8.5 Dual of a Plane Graph

Let G be a plane graph. One can form out of G a new graph H in the following way.
Corresponding to each face f of G, take a vertex f™* and corresponding to each edge
e of G, take an edge e*. Then edge ¢* joins vertices f™* and g* in H if and only
if edge e is common to the boundaries of faces f and g in G. (It is possible that f
may be the same as g.) The graph H is then called the dual (or more precisely, the
geometric dual) of G (see Fig. 8.10). If e is a cut edge of G embedded in face f of
G, then ¢* is a loop at f*. H is a planar graph and there exists a natural way of
embedding H in the plane. Vertex f*, corresponding to face f, is placed in face f
of G. Edge e*. joining f* and g*. is drawn so that e* crosses e once and only once
and crosses no other edge. This procedure 1s illustrated in Fig. 8.11. This embedding
is the canonical embedding of H. H with this canonical embedding is denoted by
G*. Any two embeddings of H, as described above, are isomorphic.

The definition of the dual implies that m(G*) = m(G), n(G*) = E(G) and
de=(f*) = dg(f), where dg(f) denotes the degree of the face f of G.

From the manner of construction of G ¥, it follows that

(i) An edge e of a plane graph G is a cut edge of G if and only if ¢* is a loop of
G*, and it is a loop of G if and only if e* is a cut edge of G*.

(il) G* is connected whether G is connected or not (see graphs G and G* of
Fig. 8.12).

The canonical embedding of the dual of G * is denoted by G **. It is easy to check
that G** is isomorphic to G if and only if GG is connected. Graph isomorphism
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Fig. 8.10 A plane graph G fi
and its dual H

.

Fig. 8.11 Procedure for drawing the dual graph
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does not preserve duality; that is, isomorphic plane graphs may have nonisomorphic
duals. The graphs G and H of Fig. 8.13 are isomorphic plane graphs, but G* % H*.
G has a face of degree 5, whereas no face of H has degree 5. Hence, G* has a
vertex of degree 5, whereas H * has no vertex of degree 5. Consequently, G* % H?*.

Exercise 5.1. Draw the dual of

(1) The Herschel graph (graph of Fig.5.4).
(i1) The graph G given below:

G

Fig. 8.12 A disconnected
graph ¢ and its (connected) =
dual G*

g

Uy usg

G H

Fig. 8.13 Isomorphic graphs G and H for which G* % H*
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Exercise 5.2. A plane graph G is called self-dual if G =~ G?*. Prove the
following:

(1) All wheels W, (n = 3) are self-dual.
(11) For a self-dual graph, 2n = m + 2.

Exercise 5.3. Construct two infinite families of self-dual graphs.

8.6 The Four-Color Theorem and the Heawood
Five-Color Theorem

What is the minimum number of colors required to color the world map of countries
so that no two countries having a common boundary receive the same color? This
simple-looking problem manifested itself into one of the most challenging problems
of graph theory, popularly known as the four-color conjecture (4CC).

The geographical map of the countries of the world is a typical example of a
plane graph. An assignment of colors to the faces of a plane graph G so that no
two faces having a common boundary containing at least one edge receirve the same
color is a face coloring of G. The face-chromatic number y*(G) of a plane graph G
is the minimum k for which G has a face coloring using k colors. The problem of
coloring a map so that no two adjacent countries receive the same color can thus be
transformed into a problem of face coloring of a plane graph G. The face coloring
of G is closely related to the vertex coloring of the dual G* of G. The fact that
two faces of G are adjacent in G if and only if the corresponding vertices of G*
are adjacent in G* shows that G is k-face-colorable if and only if G* is k-vertex-
colorable.

It was young Francis Guthrie who conjectured, while coloring the district map
of England, that four colors were sufficient to color the world map so that adjacent
countries receive distinct colors. This conjecture was communicated by his brother
to De Morgan in 1852. Guthrie's conjecture is equivalent to the statement that any
plane graph is 4-face-colorable. The latter statement is equivalent to the conjecture:
Every planar graph is 4-vertex-colorable.

After the conjecture was first published in 1852, many attempted to settle it. In the
process of settling the conjecture, many equivalent formulations of this conjecture
were found. Assaults on the conjecture were made using such varied branches of
mathematics as algebra, number theory, and finite geomeiries. The solution found
the light of the day when Appel, Haken, and Koch [8] of the University of Illinois
established the validity of the conjecture in 1976 with the aid of computers (see also
[6,7]). The proof includes. among other things, 10'Y units of operations, amounting
to a staggering 1200 hours of computer time on a high-speed computer available at
that time.
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Although the computer-oriented proof of Appel, Haken, and Koch settled the
conjecture in 1976 and has stood the test of time, a theoretical proof of the four-
color problem is still to be found.

Even though the solution of the 4CC has been a formidable task, it is rather easy
to establish that every planar graph is 6-vertex-colorable.

Theorem 8.6.1. Every planar graph is 6-vertex-colorable.

Proof. The proof is by induction on n, the number of vertices of the graph.
The result is trivial for planar graphs with at most six vertices. Assume the result
for planar graphs with n — 1, n = 7, vertices. Let G be a planar graph with n
vertices. By Corollary 8.3.5, §(G) < 5, and hence G has a vertex v of degree at
most 5. By hypothesis, G — v is 6-vertex-colorable. In any proper 6-vertex coloring
of G — v, the neighbors of v in G would have used only at most five colors,
and hence v can be colored by an unused color. In other words, G is 6-vertex-
colorable. O

It involves some ingenious arguments to reduce the upper bound for the
chromatic number of a planar graph from 6 to 5. The upper bound 5 was obtained
by Heawood [103] as early as 1890.

Theorem 8.6.2 (Heawood’s five-color theorem). Every planar graph is 5-vertex-
colorable.

Proof. The proof is by induction on n((G) = n. Without loss of generality, we
assume that G is a connected plane graph. If n < 5, the result is clearly true.
Hence, assume that n > 6 and that any planar graph with fewer than n vertices is
5-vertex-colorable. G being planar, §(G) < 5 by Corollary 8.3.5, and so G contains
a vertex vy of degree not exceeding 5. By the induction hypothesis, G — vy is 5-
vertex-colorable.

If d(vy) < 4, at most four colors would have been used in coloring the neighbors
of vg in G in a 5-vertex coloring of G — vy. Hence, an unused color can then be
assigned to vy to yield a proper 5-vertex coloring of G.

If d(vy) = 5, but only four or fewer colors are used to color the neighbors of vy
in a proper 5-vertex coloring of G — vy, then also an unused color can be assigned
to vy to yield a proper 5-vertex coloring of G.

Hence assume that the degree of vy is 5 and that in every 5-coloring of G — vy,
the neighbors of v in G receive five distinct colors. Let vy, v, v3, v4, and vs be the
neighbors of vy in a cyclic order in a plane embedding of G. Choose some proper
5-coloring of G — vy with colors, say, ¢y.¢a,..., cs. Let{V}, V5,. .., V5} be the color
partition of G — vy, where the vertices in V; are colored ¢;, 1 i < 5. Assume
furtherthatv; € V,, 1 <i <5,

Let G;; be the subgraph of G — v induced by V; U V;. Suppose v; and v;, 1 <
i,j = 5. belong to distinct components of G;;. Then the interchange of the colors
¢; and ¢; in the component of G;; containing v; would give a recoloring of G — vy
in which only four colors are assigned to the neighbors of v;. But this is against our
assumption. Hence, v; and v; must belong to the same component of G;;. Let P; ;

I A
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Fig. 8.14 Graph for proof
of Theorem 8.6.2

be a v;-v; path in G;;. Let C denote the cycle vovy Pi3vsvg in G (Fig. 8.14). Then C
separates vy and vy4; that is, one of v, and v4 must lie in int C and the other in ext C.
InFig. 8.14, v € int C and vy € ext C. Then P4 must cross C at a vertex of C. Bul
this is clearly impossible since no vertex of C receives either of the colors ¢, and
4. Hence this possibility cannot arise, and G is 5-vertex-colorable. (]

Note that the bound 4 in the inequality y(G) < 4 for planar graphs G 1is best
possible since K is planar and y(K4) = 4.
Exercise 6.1. Show that a planar graph G is bipartite if and only if each of its faces

is of even degree in any plane embedding of G.

Exercise 6.2. Show that a connected plane graph G is bipartite if and only if G is
Eulerian. Hence, show that a connected plane graph is 2-face-colorable if and only
if it is Eulerian.

Exercise 6.3. Prove that a Hamiltonian plane graph is 4-face-colorable and that its
dual is 4-vertex-colorable.

Exercise 6.4. Show that a plane triangulation has a 3-face coloring if and only if it
is not K4. (Hint: Use Brooks' theorem.)

Remark 8.6.3. (Grotzsch): If G is a planar graph that contains no triangle, then G
1s 3-vertex-colorable.

8.7 Kuratowski’s Theorem

Definition 8.7.1. 1. A subdivision of an edge ¢ = uv of a graph G is obtained by
introducing a new vertex w in e, that is, by replacing the edge ¢ = uv of G by
the path uwv of length 2 so that the new vertex w is of degree 2 in the resulting
eraph (see Fig. 8.15a).
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Fig. 8.15 (a) Subdivision of edge ¢ of graph G. (b) two homeomorphs of graph G

2. A homeomorph or a subdivision of a graph G is a graph obtained from G by
applying a finite number of subdivisions of edges in succession (see Fig. 8.15b).
G itself is regarded as a subdivision of G.

3. Two graphs G| and G, are called homeomorphic if they are both homeomorphs
of some graph G. Clearly, the graphs of Fig.8.15b are homeomorphic, even
though neither of the two graphs is a homeomorph of the other.

Kuratowski’s theorem [129] characterizing planar graphs was one of the major
breakthrough results in graph theory of the 20th century. As mentioned earlier,
while examining planarity of graphs, we need only consider simple graphs since
the presence of loops and multiple edges does not affect the planarity of graphs.
Consequently, a graph is planar if and only if its underlyving simple graph is planar.
We therefore consider in this section only (finite) simple graphs. We recall that for
any edge e of a graph G, G — e is the subgraph of G obtained by deleting the
edge ¢, whereas G o ¢ denotes the contraction of ¢. We always discard isolated
vertices when edges get deleted and remove the new multiple edges when edges
get contracted. More generally, for a subgraph H of G, G ¢ H denotes the graph
obtained by the successive contractions of all the edges of H in G. The resulting
graph is independent of the order of contraction. Moreover, if G is planar, then G oe
is planar; consequently, G o H is planar. In other words, if G o H is nonplanar for
some subgraph H of (7, then G is also nonplanar, Further, any two homeomorphic
graphs are contractible to the same graph.

Definition 8.7.2. If G o« H = K, we call K a contraction of GG; we also say that
G is contractible 1o K. G is said to be subcontractible to K if G has a subgraph

H contractible to K. We also refer to this fact by saying that K is a subcontraction
of G.
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i d

Fig. 8.16 Graph G subcontractible to triangle abe

Example 8.7.3. For instance, in Fig. 8.16, graph G is subcontractible to the triangle
abce. (Take H to be the cycle abed and contract the edge ad in H. By abuse of
notation, the new vertex is denoted by a or d.) We note further that if G’ is a
homeomorph of G, then contraction of one of the edges incident at each vertex
of degree 2 in V(G')\V(G) results in a graph homeomorphic to G.

Our first aim is to prove the following result, which was established by Wagner
[186] and, independently, by Harary and Tutte [96].

Theorem 8.7.4 ([96,186]). A graph is planar if and only if it is noi subcontraciible
to K5 or Ks33.

As a consequence, we establish Kuratowski’s characterization theorem for planar
graphs.

Theorem 8.7.5 (Kuratowski [129]). A graph is planar if and only if it has no
subgraph homeomorphic to Ks or K3 3.

The proofs of Theorems 8.7.4 and 8.7.5, as presented here, are due to Fournier [68].
Recall that any subgraph and any contraction of a planar graph are both planar.

Definition 8.7.6. A simple connected nonplanar graph G is irreducible if, for each
edge ¢ of G, G o e is planar.

For instance, both K5 and K5 3 are irreducible.

Proof of theorem 8.7.4. If G has a subgraph G, contractible to K5 or K5 3. then
since K5 and K ; are nonplanar, Gy and therefore G are nonplanar.

We now prove the converse. Assume that G is a simple connected nonplanar graph.
By Theorem 8.2.8, at least one block of G is nonplanar. Hence, assume that G
is a simple 2-connected nonplanar graph. We now show that G has a subgraph
contractible to K5 or K33.

Keep contracting edges of G (and delete the new multiple edges, if any, at each
stage of the contraction) until a (2-connected) irreducible (nonplanar) graph H
results, Clearly, 6(H) = 3. Now, if e and f are any two distinct edges of G, then
(Goe)— f = (G — f) o e. Hence, the graph H may as well be obtained by
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Fig. 8.17 Graph H for case 1 of proof of Theorem 8.7.4

deleting a set (which may be empty) of edges of G, resulting in a subgraph G, of G
and then contracting a subgraph of GGy. We now complete the proof of the theorem
by showing that H has a subgraph K homeomorphic (and hence contractible) to K5
or K33 In this case, G has the subgraph Gy, which is contractible to K5 or K3 3.
Lete =ab € E(H)and H' = H — {a,b}. Then H' is connected. If not, {a, b}
is a vertex cutof H. Let G, ..., G, be the components of H'. As H is irreducible,
H — V(G]) is planar, and there exists a plane embedding of H' in which the edge
ab is in the exterior face. As G: is planar, G: can be embedded in this exterior face
of H'. This would make H a planar graph, a contradiction. Thus, A’ is connected. ]

Case 1. H' has a cut vertex v. Let G1.G>..... G, (r = 2) be the components of
H'—{v},and let G, G,,..., G, 0 < 5 < r, be those components that are connected
to both @ and b. (see Fig.8.17). If r > s, then each of G4, ....G, is connected
to only one of @ or b. Assume that G, is connected to b and not to a. From the
plane representation of G o (G,4, U ... U G, ), the contraction of G obtained by
contracting the edges of G+, ..., G,, we can obtain a plane representation of H'
(see Fig.8.17). [In fact, if G, is contracted to the vertex w,, then as the subgraph
A, = (v.b,v(G,)) of H' is planar, the pair of edges {vw,,w,b} can be replaced
by the planar subgraph A, and so on.] Hence this case cannot arise. Consequently,
r=gs. If r =5 = 2, the plane embeddings of H' ¢ G, and H' o (5, yield a plane
embedding of H', a contradiction (see Fig. 8.18). Consequently, r = s > 3. In this
case, H' contains a homeomorph of K33 (see Fig. 8.19), with {w;, w2, ws3: a.b, v}
being the vertex set of K;3. (Other possibilities for wy, w,, w3 will also yield a
homeomorph of K33.)

Case 2. H' is 2-connected. Then H' contains a cycle C of length at least 3.
Consider a plane embedding of H o e (where ¢ = ab, as above). If ¢ denotes
the new vertex to which @ and b get contracted, (H oe)—c = H’'. We may therefore
suppose without loss of generality that ¢ is in the interior of the cycle C in the plane
embedding of H c e.
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Fig. 8.18 Plane embedding
for case | of proof of
Theorem 8.7.4

&

Fig. 8.19 Homeomorph for case 1 of proof of Theorem 8.7.4

Now, the edges of H c e incident to ¢ arise out of edges of H incident to a or b.
There arise three possibilities with reference to the positions of the edges of H c e
incident to ¢ relative to the cycle C.

(1)

(i1)

(111)

Suppose the edges incident to ¢ occur so that the edges incident to @ and the
edges incident to b in H are consecutive around ¢ in a plane embedding of
H o e, as shown in Fig.8.20a. Since /{ is a minimal nonplanar graph, the
paths from ¢ to C can only be single edges. Then the plane representation of
H o e gives a plane representation of H. as in Fig. 8.20b, a contradiction. So
this possibility cannot arise.

Suppose there are three edges of H o e incident with ¢, with each edge
corresponding to a pair of edges of H, one incident to a and the other to b,
as in Fig.8.21a. Then H contains a subgraph contractible to Ks, as shown in
Fig. 8.21b.

We are now left with only one more possibility.

There are four edges of H o e incident to ¢, and they arise alternately out
of edges incident to @ and b in H, as in Fig. 8.22a. Then there arises in H
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Fig. 8.20 First configuration for case 2 of proof of Theorem 8.7.4. Edges incident to @ and b are
marked & and b, respectively

fl "
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Fig. 8.21 Second configuration for case 2 of proof of Theorem 8.7 4. Edges incident to both a and
b are marked ab

Fig. 8.22 Third configuration for case 2 of proof of Theorem 8.7 .4

a homeomorph of K33, as shown in Fig. 8.22b. The sets X = {a, 5, 14} and
Y = {b, 1,13} are the sets of the bipartition of this homeomorphof K33. [

We now proceed to prove Theorem 8.7.5.

Proof of theorem 8.7.5. The *sufficiency™ part of the proof is trivial. If G contains
a homeomorph of either Ks or K1, G is certainly nonplanar, since a homeomorph
of a planar graph is planar.
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Fig. 8.23 Graphs for proof a
of Theorem 8.7.5 T T T
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Assume that G is connected and nonplanar. Remove edges from G one after
another until we get an edge-minimal connected nonplanar subgraph Gg of G; that
is, G is nonplanar and for any edge ¢ of G, Gy — e is planar. Now contract the
edges in G incident with vertices of degree at most 2 in some order. Let us denote
the resulting graph by G,. Then G is nonplanar, whereas G, — ¢ is planar for any
edge e of G and the minimum degree of G, is at least 3. We now have to show that
Gﬁ contains a homeomorph of K5 or K3 3.

By Theorem 8.7.4, G, is subcontractible to K5 or K33. This means that G,
contains a subgraph H that is contractible to K5 or K33. As G;} — e is planar for
any edge e of G,. G;, = H. Thus, G|, itself is contractible to Ks or K33. If G
is either K5 or K33, we are done. Assume now that G:] 1s neither K5 nor K 3.

Let ej.e3...., e, be the edges of G, when contracted in order, that result in a K
or Kg_q
First, let us assume that r = 1, so that G o e, is either K5 or K3 3. Suppose

that G|, o e; = K33 with {xy, x>, x3} and {y;. ¥, ¥3} as the partite sets of vertices.
Suppose that x; is the vertex obtained by identifying the ends of ;. We may then
take ¢; = xja (by abuse of notation), where a is a vertex distinct from the x;’s
and y;’s (Fig.8.23a). If a is adjacent to all of y;, y» and ys, then {a, x5, x3} and
{¥1, y2, y3} form a bipartition of a K33 in G/. If a is adjacent to only one or two of
{¥1. 2, y3} (Fig. 8.23b), then again G contains a homeomorph of K3 ;.

Next, let us assume that Gj o ¢; = Ks with vertex set {vi,vy, v, v4, vs}.
Suppose that v, is the vertex obtained by identifying the ends of e,. As before,
we may take ¢j = wvja, where a € {vi,va,vi3,vq,vs). If a is adjacent to
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Fig. 8.24 Graphs for proof of Theorem 8.7.5

all of {v2.v3,v4,vs}, then G, — v, is a K5, contradiction to the fact that any
proper subgraph of G is planar. If a is adjacent to only three of {va, vs, v4, vs},
say va,v3, and vy, then the edge-induced subgraph of G|, induced by the edges
avy, ava, avs, avy, vivs, vava, vavy, Vavs, vavy, v3vs, and vqvs is a homeomorph of Ks.
In this case, G/, also contains a homeomorph of K; ;3. Since d{;ﬁ[w) > 3, v is
adjacent to at least one of v, v3, and vy, say v5. Then the edge-induced subgraph of
G, induced by the edges in {avy, avs. avs, viva, vava, vava, Vivs, vavs, Vavs)is a Ks 3,
with {a,v4, vs} and {v;,vs, v3} forming the bipartition. We now consider the case
when a is adjacent to only two of v, v3. v4 and vs, say v» and v3. Then, necessarily,
vy is adjacent to vy and vs (since on contraction of the edge v a, v, is adjacent to
V2, V3, v4, and vs). In this case G| also contains a K 3 (see Fig. 8.24b). Finally, the
case when a 1s adjacent to at most one of v,, v3, v4, and vs cannot arise since the
degree of a is at least 3 in G;,. Thus, in any case, we have proved that when r = 1,
G, contains a homeomorph of K3 3. The result can now easily be seen to be true by
induction on r. Indeed, if H> = H) o e and H; contains a homeomorph of K3 3,
then H; contains a homeomorph of Kj 3. O

The nonplanarity of the Petersen graph (Fig.8.25a) can be established by
showing that it is contractible to K5 (see Fig. 8.25b) or by showing that it contains a
homeomorph of K3 3 (see Fig. 8.25¢).

Exercise 7.1. Prove that the following graph is nonplanar.
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Fipg. 8.25 Nonplanarity of the Petersen graph. (a) The Petersen graph P, (b) contraction of P to
K5, (¢) A subdivision of K13 in P
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