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Fields

In our discussion of rings we have already singled out a special class
which we called fields. A field, let us recall, is 2 commutative ring
with unit element in which cvery nonzero element has a multiplicative
inverse. Put another way, a field is a commutative ring in which we
can divide by any nonzero element.

Fields play a central role in algebra. For one thing, results about
them find important applications in the theory of numbers. For
another, their theory cncompasses the subject matter of the theory of
equations which treats questions about the roots of polynomials,

In our development we shall touch only lightly on the field of
algebraic numbers. Instead, our greatest emphasis will be on aspects
of field theory which impinge on the theory of equations. Although
we shall not treat the material in its fullest or most general form, we
shall go far enough to introduce some of the beautiful ideas, due to
the brilliant French mathematician Evariste Galois, which have
served as a guiding inspiration for algebra as it is today.

T.- I

-+ 5% Extension Fields '~
In this section we shall be concerned with the relation of one field to
another. Let F be a field; a field X is said to be an extension of F if K
contains F, Equivalently, K is an extension of Fif Fis a subfield of X.

Throughout this chapler F unll denote a given field and K an extension of F.
As was pointed out earlier, in the chapter on vector spaces, if X is
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an extension of F, then, under the ordinary field operationsin K, K is a VECtor
space over . As a vector space we may talk about linear “'—!'313"51'14:]r:ru.:\\-;1
dimension, bases, etc., in K relative to F.

—
DEFINITION ' The degree of K over F is the dimension of K as a Vector
space over F.

+ We shall always denote the degree of K over F by [K:F]. Of particyla,
Interest to us is the case in which [K:F] is finite, that is, when X is finite.
dimensional as a vectorspace over F. This situation is described by saying
that K is a finite extension of F:

We start off with a relatively simple but, at the same time, highly effective
result about finite extensions, namely,

THEOREM 5.1.1  If L is a finite extension of K and if K is a finite extension of
F, then L is a finite extension of F. Moreover, [L:F) = [L:K][K:F].

_—

Proof. _The strategy we employ in the proof is to write down explicitly
a basis of L over F. In this way not only do we show that L is a finite
extension of F, but we actually prove the sharper result and the one which
is really the heart of the theorem, namely that [L:F] = [L :K][K:F].

Suppose, then, that [L:K] = m and that [K:F] = n. Let » cnnyil
be a basis of L over K and let w,,..., w, be a basis of K over F.] What
could possibly be nicer or more natural than to have the elements v,
where 1 =1,2,...,m, j=1,2,...,n serve as a basis of L over F?
Whatever else, they do at least provide us with the right number of elements.
We now proceed to show that they do in fact form a basis of L over F.
What do we need to establish this? First we must show that every element
in L is a liuear combination of them with coefficients in F, and then we
must demonstrate that these mn elements are linearly independent over F.

Let { be any element in L. Since every element in L is a linear combination
of vy,..., v, with cocfficients in K, in particular, { must be of this form.
Thus t = kv, + - + k., where the elements £, .. ., k, are all in K.
However, every element in K is a linear combination of w, e , w, with
coefficients in F. Thus k; = f, w, + --- + fialps - ky = fryw, + -+
finwm *vey km =fmlw1 s fmnwm where E’W—'r}’ﬁj 15 in .

Substituting these expressions for k,, . . ., kainto & = ko, + -+ + knbw
we obtain ¢ = (fi,w0y + +f1.0,)0 + 0 4 (S, + 00+ Sogll)ln
Multiplying lhisfuut, using the distributive and associative laws, we finally
armnve at | = o, wy +°-- + /7 TH B , ,
Since the f;; arc in F, we have r{alﬁ Fy WL S L Lo %

zed { as a linear combination over F of
the elements ﬂ;ﬂTh"—‘Tffﬂmr the elements vw; do indeed span all of L over

F, and so they [Ihll the first requisite pProperty of a basis.
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Sec. 5.1 Extension Fields

We still must show that the elements ), are linearly independent OVET F.
(Guppose that fubitoy 4"+ finioy 422 + fipay 4 - 4 Suuleltn T
where the fij are in E. Our objective is to prove that each f;; = 0. Re-
grﬂupiﬂg the above expression yields (f),w, + - + fia@WalV1 T 777 ¥
I:ﬁ[wl o +fi"f'u”]ﬂll b {fmlwl + +fmnwn}um = 0.
Since the w; are in K, and since K o F, all the elements k; = fuwy 777
t [ian are in K. Now kyoy + -+ + kv, = 0 with ky, ..., kn € K. But,
by assumption, vy, ..., ¢, form a basis of L over K, so, in particular they
must be linearly independent over K. The net result of this is that £, =
A k, = 0. Using the explicit values of the k;, we get

Jawy ++ fLw, =0 for i=1,2,..,,nﬂ

But now we invoke the fact that the w; are linearly independent over s
this yields that each f;; = 0. In other words, we have proved that the
pw; are linearly independent over F. In this way they sausfy thke other
requisite property for a basis.

G’Jc have now succeeded in proving that the mn elements vaw; form a
basis of L over F. Thus [L:F] = mn; since m = [L:K] and n = [K:F]
we have obtained the desired result [L:F] = [L:K][K:F].

Suppose that L, K, F are three fields in the relation L= K o F and, Hants
suppose further that [L:F] is finite. Clearly, any elements in L linearly P 1 S
independent over K are, all the more so, linearly iﬂdEandEﬂl OVEr T-F-r:*
Thus the assumption that [L:F] is finite forces the conclusion that k] "7
is finite. Also, since K is a subspace of L, [K:F] is finite. By the theorem,

(L:F] = [L:K][K:F], whence [K:F] | [L:F]. We have proved the

COROLLARY If L is a finite extension of F and K is a subfield of L which
contains F, then [K:F] | [L:F].

Thus, for instance, il [L:F] is a prime number, then there can be no
fields properly between F and L. A liule later, in Section 5.4, when we
discuss the construction of certain geometric figures by straightedge and
compass, this corollary will be of great significance.

/EEFlﬁlTIUN An element a € K is said to be algebraic over F il there exist
E-f:‘ﬁitmmtﬂ (o, By, - - - » &, iN F, NOL all 0, such that aya" + a,8" ' + -+ +

..__.--ﬁ":.ﬂ_

@ the polynomial ¢(x) € F[x], the ring of polynomials in x over F, and
I glx) = fx™ + ﬁlx'"'l 4+ ++++ P, then for any element b € K, by ¢q(b)
we shall mean the element fob™ + B¢" ' + -+ + B, in K. In the ex-
Pression commonly used, g(b) is the value of the polynomial g(x) obtained
by substituting & for x. The element b is said to satisfy g(x) if g(b) = 0.

[ -
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210 Fields Ch.5

In these terms, a € K is algebraic over F if there is a nonzero Polynomjy
#(x) € F[x] which a satisfies, that is, for which p(a) = (rj .

~" “Let X be an extension of F and let a be in K. Let 47 be the collection of
all subfields of K which contain both F and a.  is not empty, for K itself
i1s an clement of #. Now, as is easily proved, the intersection of any numbg,
of subfields of K is again a subficld of XK. Thus the intersection of all those
subfields of K which are members of .# is a subfield of K. We denote this
subfield by F(a). What are its properties? Certainly it contains both F
and a, since this is true for every subfield of K which is a member of 4
Moreover, by the very definition of intersection, every subfield of K in 4
contains F(a), yet F(a) itself is in #. Thus F(a) is the smallest subfield of K
containing both F and a. We call F(a) the subfield obtained by adjoining a to F.

Our description of F(a), so far, has been purely an external one. We now
give an alternative and more constructive description of F(a). Consider a]|
these elements in K which can be expressed in the form i, + fa+ -+ - + B.a*:
here the fi’s can range freely over F and s can be any nonnegative integer,
As elements in K, one such element can be divided by another, provided
the latter is not 0. Let U be the set of all such quotients. We leave it as
an exercise to prove that U is a subfield of K.

On one hand, U certainly contains F and a, whence IV = F(a). On
the other hand, any subfield of K which contains both F and a, by virtue
of closure under addition and multiplication, must contain all the elements
Bo + Bia + -+ - + B.a® where each Bie F. Thus F(a) must contain all
these elements; being a subfield of K, F(a) must also contain all quotients
of such elements. Therefore, F(a) > /. The two relations U < F(a), .
U = F(a) of course imply that U = F(a). In this way we have obtained
an internal construction of F(a), namely as U.

We now intertwine the property that g e K is algebraic over F with
macroscopic properties of the field F(a) itself. This is

\ .~ THEOREM 5.1.2 The

element a € K s algebraic over F if and only if F(a)
i5 a finite extension of F.

Proof.  As is so very common with so many such °
positions, one-half of the proof will
whereas the other half will be dee

Suppose that F(a) is a finite extension of F and that [F(a):F] = m.

Consider the elements L% o

in number. By Lemma 4.2.4, these elements are linearly dependent over

F. Therefore, there are elements %) Xy5..., @, in F, not all 0. such that
| : |

urnll ;— {II-;-I- a,a’ + -.-l+ 2,a" = 0. Hence g is algebraic over F and
satishes the nonzero polynomial P(x) = oy + g, + :

*** + a, & in F[x]
of degree at most m = [F(a):F). This proves the I“if“ tof the theorent.

Now to the “only if” part. Suppose that 4 in K is algebraic over F. By

‘if and only if** pro-
be quite straightforward and easy,

Scanned with CamScanner

Zearesd wilh Cnroomar

Scanne d with CamScanner



Sec. 5.1 Extension Fields Al

J;ssumption, @ satisfies some nonzero polynomial in F[x]; let p(x) be a

|:.,-numial in F[x] of smallest positive degree such that p(a) = 0. We |'
claim that p(x) 1s wrreducible over F. For, suppose that p(x) = f(x)g(x),
where f (%), §(x) € F[x]; then 0 = p(a) = f(a)e(a) (see Problem 1) and,
ﬁnc:f(ﬂ} and g(a) are elements of the field K, the fact that their product
i 0 forces f(a) =0 or g(a) = 0. Since p(x) is of lowest positive degree
with p(@) = 0, we must conclude that one of deg f(x) > deg p(x) or
degg(x) 2 deg #(x) must hold. But this proves the irreducibility of p(x).

We define the mapping ¢ from F[x] into F(a) as follows. For any
h(x) e F[x], h(x)y = h{a). We leave it to the reader to verify that ¢ 1s a
ring homomorphism of the ring F[x] into the field F(a) (see Problem 1).
What is V, the kernel of ? By the very definition of ¢, V =
(h(x) € F[x] | h(a) = 0}. Also, p(x) is an element of lowest degree in the
ideal V of F[x]. By the results of Section 3.9, every element in V is a multiple
of p(x), and since p(x) 1s irreducible, by Lemma 3.9.6, V is a maximal ideal
of F[x]. By Theorem 3.5.1, F[x]/V is a field. Now by the general homo-
morphism theorem for rings (Theorem 3.4.1), F[x]/V is isomorphic to the
image of F[x] under . Summarizing, we have shown that the image of
F[x] under  is a subfield of F(a). This image contains xy = a and, for
every a € F, ey = a. Thus the image of F[x] under  is a subfield of
F[a] which contains both F and a; by the very definition of /(a) we are
forced to conclude that the image of F[x] under  is all of F(a). Put more
succinctly, F[x]/V is isomorphic to F(a).

Now, V' = (p(x)), the ideal generated by p(x); from this we claim that
the dimension of F[x]/V, as a vector space over F, is precisely equal to
deg p(x) (see Problem 2). In view of the isomorphism between FF[x]/}" and
F(a) we obtain the fact that [F(a):F] = deg p(x). Therefore, [F{a):F] is
certainly finite; this is the contention of the “only if” part of the theorem.
Note that we have actually proved more, namely that [F(a):F] is equal to
the degree of the polynomial of least degree satisfied by a over F.

The prool we have just given has been somewhat long-winded, but
deliberately so. The route followed contains important ideas and ties in
results and concepts developed earlier with the current exposition. No part
of mathematics is an island unto itsell.

We now redo the “only if” part, working more on the inside of F(a).
This reworking is, in fact, really identical with the proof already given; the
constituent pieces are merely somewhat differently garbed.

Again let p(x) be a polynomial over F of lowest positive degree satisfied

Y @. Such a polynomial is called a minimal polynomial for a over F. We
May assume that its coefficient of the highest power of x is 1, that is, it is
monic; in that case we can speak ol the minimal polynomial for a over F
for any two minimal, monic polynomials for a over F are equal. (Prove!)
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thus p(s) = 2 + @t 4o g g
where the a, are in F. By assumption, @ + o "+ ': @, =
whence @ = —,@" "} —@a"" 2 — -1 — What_ about & _? From
the above, ¢"*' = —a,d" — a8l — o — @85 1f' we substitute th,
expression for 4" into the right-hand side of this 1':121!1«:11-1,l we realize g*+1
as a linear combination of the elements I, Byovey @ e F. Con.
tinuing this way, we get that @"**, for k 2 0, is 2 linear combination over
Foll. da i@ %

Now consider T = {f, + fya + -+ ﬁ..-lﬂ"_l | Bos B> - - - » ﬂ-ﬂ'EF}.
Clearly, T is closed under addition; in view of thr: remarks made in the
paragraph above, it is also closed under multiplicaton. Whatever further
it may be, T has at least been shown to be a ring. Moreover, T contains
both F and a. We now wish to show that T is more than just a ning, that
it is, in fact, a field.

Let 0 #Fu=pfy + fya+--+ ﬁ"__lﬂ'-l be in 7T and let A(x) = f, +
Bx+-+++ P, 'eF[x]. Since u# 0, and u = h(a), we have that
h(a) # 0, whence p(x) ¥ h(x). By the irreducibility of p(x), p(x) and h(x)
must therefore be relatively prime. Hence we can find polynomials s(x)
and ¢(x) in F[x] such that p(x)s(x) + A(x)t(x) = 1. But then | =
pla)s(a) + h(a)t(a) = h(a)t(a), since p(a) = 0; putting into this that
u = h(a), we obtain ut(a) = 1. The inverse of u is thus (a); in t(a) all
powers of a higher than n — | can be replaced by linear combinatious of I,
a,...,a" ! over F, whence t(a) e T. We have shown that every ronzero
element of T has its inverse in T; consequently, 7 1s a field. However,
T < F(a), yet F and a are both contained in T, which results in T = F(a).
We have identified F(a) as the set of all expressions B, + f,a + -+ +

Suppose that p(x) is of degree n;

.ﬁ' lﬂn- 1.
=2

Now T is spanned over F by the elements 1, a,..., 2"~ ! in consequence
of which [T:F] < n. However, the elements 1,a,a%...,a"" ! are

linearly independent over F, for any relation of the form y, + y,8 + ***
+ Yn-1a" ', with the elements y, € F, leads to the conclusion that &
satisfies the polynomial yy + yx + -+ + 3 _ 2" ! over F of degree
less than n. This contradiction proves the linear independence of 1, g, ..+,
a"~ !, and so these elements actually form a basis of T over F, whence, in
fact, we now know that [T:F] =n Since T = F(a), the result
[F(a):F] = n follows.

DEFINITION [ The element a € K is said to be algebraic of degree n over

F il 1t saushes 3 nonzero polynomial over F of degree n but no nonzerd
polynomal of lower dtgreﬂ

In the course of proving Theorem 5.1.2 (in each proof we gave), we va:d
a somewhat sharper result than that stated in tha: theorem, namely
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THEUHEM 5.1.3 If a & K is algebraic of degree n over F, then [F(a):F] = n.

: - i -an immediate
This result adapts itself to many uses. We give now, as-an 1mm

-onsequence thereof, the very inieresung

rHEOREM 5.1.4 If a, b in K are algebraic over F then a + b, ab, and alb
if b # 0) are all algebraic over F. In other words, the elements in K which are

sloebraic over F form a subfield of K.

Proof. Suppose that a is algebraic of degree m over F while b is algebraic
of degree n over F. By Theorem 5.1.3 the subficld T = F_I[f.r} of K is ?f
degree mover F. Now b is algebraic of degree n over F, a fortior: it is algebraic
of degree at most n over T which contains F. Thus the subficld W = T(b)
of K, again by Theorem 5.1.3, is of degree at most n over T. But [W:F] =
(W:T][T:F] by Theorem 5.1.1; therefore, [W:F] < mn and so W 1s a
finite extension of F. However, a and b are both in W, whence all of
a2 + b, ab, and afb are in . By Theorem 5.1.2, since [IV:F] 1s rﬁ_niu:,

e T e e

these elements must be algebraic over F, thereby proving the theorem.

Here, too, we have proved somewhat more. Since [W:F] < mn, every
clement in W satisfies a polynomial of degree at most mn over F, whence the

CDHGLLAHYD]& and b in K are algebraic over F of degrees m and n, respectively, -~
thn @ + b, ab, and alb (if b # Q) are algebraic over F of degree at most mn. ~

In the proof of the last theorem we made two extensions of the field F.
The first we called T'; it was merely the field F(a). The second we called IV
and it was 7°(b). Thus W = (F(a))(b); it is customary to write it as
F(a, b). Similarly, we could speak about F(b, a); it is not too difficult to
prove that F(a, b) = F(b,a). Continuing this pattern, we can define
Fla,, a,,...,a,) for clements a,, ..., a, in ﬂ:j

PEFENITlﬂN The extension K of F is called an algebraic extension of F
levery element in K is algebraic over F.

"F-FI': prove one more result along the lines of the theorems we have proved
*0 lar.,

THECEIHEM 5.1.5 If L is an algebraic extension of K and if K is an algebraic
lension of F, then L is an algebraic extension of F.,

Proof. Let u be any arbitrary clement of L; our objective is to show that

U sat; e : :
mﬂﬁ}lsﬁes some nontrivial polynomial with coefficients in F. What infor-
alion do we have at present? We certainly do know that u satisfies some
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polynomial ¥ + ¢;#*~! + -+ + g,, where g,,...,0, are in K. B, ,
is algebraic over F; therefore, by several uses of Theorem 5.1.3, pp
F(oy,...,0,) is a finite extension of F. Since u satisfies the polynomi,
¥ + g, ' 4+ -+ g, whose coefficients are in M, u 1s algebraic gy,
M. Invoking Theorem 5.1.2 yields that M (u) is a finite extension of 4y
However, by Theorem 35.1.1, [M(u):F] = [M (u) :M][M:F], whenc,
M (u) is a finite extension of F. But this implies that u 1s algebraic over F
completing proof of the theorem.

A quick description of Theorem 5.1.5: algebraic over algebraicis algebrajc

The preceding results are of special interest in the particular case j,
which Fis-the field of rational numbers and K the field of complex numbers,

DEFINITION A complex number is said to be an algebraic number if it i
algebraic over the field of rational numbers.

A complex number which is not algebraic is called transcendental. An the
present stage we have no reason to suppose that there are any transcendental
numbers. In the next section we shall prove that the familiar real number
¢ is transcendental. This will, of course, establish the existence of trans.
cendental numbers. In actual fact, they exist in great abundance; in a
very well-defined way there are more of them than there are algebraic

numbers. ) ‘
Theorem 5.1.4 applied to algebraic numbers proves the interesting fact

that the algebraic numbers form a field; that is, the sum, products, and quotients

of algebraic numbers are again algebraic numbers. i
Theorem 5.1.5 when used in conjunction with the so-called “fundamental

theorem of algebra,” has the implication that the roots of a polynomiil

whose cocfficients are algebraic numbers are themselves algebraic numbers.

b
Problems :
1. Prove that the mapping Y:F[x] = F(a) defined by A(x)y = hld
is 2 homomorphism.

9. Let F be a field and let F[x] be the ring of polynomials i e
Let g(x), of degree n, be in F[x] and let V = (g(x)) be the e

generated by g(x) in F[x]). Prove that F[x]/}"is an n-dimensiona!
vector space over F.

3. (a) If Visa finite-dimersional vector space over the fie i
£ is a subfield of K such that [K:F] is finite, show that l'
finite-dimensional vector space over F and that moreoves
dim, (V) = (dimy (V))([K:F]). +

(b) Show that Theorem 5.1.1 is a specia

'
B == Lo N » 2es

n x over F.

Id K, and if

| case of the nf;su'lt of part (a)-
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= -
L.Frm.ﬂ_) wh;nc::ﬂwl? can find a Prime number larger than both ¢, and n and
jarge €OYE + F{ET: s “afal < 1. But ¢e; + -+ + 6,8, =
. F{O) 4" ¢ n), 0 m : . . @ g
o (0) | ;ss'hl, ust _'5'" ﬂf‘ tnleger; since it is smaller than 1 in
jze our a;‘};} possible conclusion js that €& + +++ + ¢ce. = 0. Conse-
® O & " AR ;
quentl)’: f:h z::t} '; F+DE"F (n) = 0; this however 1s sheer nonsense, since
we know pA (F(0) +--. 4 c.F (n)), whereas #|0. This contradic-

ion, stemming from the assumption that ¢ js algebraic, proves that ¢ must
be transcendental.

Problems

. Using the infinite series for e,

+”'+l+“*r

£=l+l+ l
1! 3! m!

1
Eé-!+

prove that ¢ 1s irrational.

2. Ifg(x) is a polynomial with integer coefficients, prove that if p is a2 prime

number then for i > p,
d [ g(x)
de' \(p — 1)!

is a polynomial with integer coefficients each of which is divisible by p.

3. If a is any real number, prove that (a"/m!) =+ 0 as m — 0.

4, Ifm > 0 and n are integers, prove that ¢™" is transcendental.
{-——.—ﬂ-

Il »
«#%8.3 Roots of Polynomials

In Section 5.1 we discussed elements in a given extension K of F which were
algebraic over F, that is, elements which satisfied polynomials in ¥ [x].
We now turn the problem around; given a polynomial p(x) in F [x] we
wish to find a field X which is an extension of F in which p(x) has a root.

No longer is the field K available to us; in fact it is our prime objective to
construct it. Once it is constructed, we shall examine it more closely and

see what consequences we can derive.

DEFINITION &-fp(x) g F[x], then an element a lying in some extension

field of F is called a root of p(x) if p (a) = ,9.:.]

\-'I.

L]

We begin with the familiar result known as the Remainder Theorem.

and if K is an extension of F, then for any ele- P

L
EMMA 8.3.1 I/ () € FLS) 000 L e q(2) @ K(5] and moler deg () =

mentbe K, p(x) = (x — b)g(x) + £(
deg p(x) — 1.
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Proof. Since F < K, F[x] is contained in K[x], whence we cap o,
sider p(x) to be lying in K[x]. By the division algorithm for ]}Ell}mgmiah
in K[x], p(x) = (x — b)g(x) + r, where g(x) e K[x] and where T =
or degr < deg (x — b) = 1. Thus either r =0 or degr = 0; in Cithe
case r must be an element of K. But exactly what element of K j; in
Since p(x) = (x — b)g(x) + 1, p(b) = (b= b)g(b) + 7 = 1. Therefor,
p(x) = (x — b)g(x) + p(b). That the degree of g(x) is one |ess than tha of
p(x) is easy to verify and is left to the reader. I

COROLLARY IfaeK is a root of p(x) € F[x), where F = K, then in K[y |
(x — a) | p().

Proof. From Lemma 5.3.1, in K[x], p(x) = (x — a)g(x) + p(a) =
(¥ — a)q(x) since p(a) = 0. Thus (x — a) | p(x) in K[x].

m if (x — a)™| p(x), whereas (x — a)™* ! } p(x).

A reasonable question to ask is, How many roots can a polynomial have
in a given field? Before answering we must decide how to count a root of
multiplicity m. We shall always count it as m roots. Even with this convention
we can prove

LEMMA 5.3.2 A polynomial of degree n over a field can have at most n roots in
any exlension field.

Proof.. We proceed by induction on n, the degree of the polynomial p(x). |
If p(x) is of degree 1, then it must be of the form ax + B where a, f are
in a field F and where o # 0. Any a such that p(a) = 0 must then imply
that @a + f = 0, from which we conclude that 2 = (—pBfa). That is,
#(x) has the unique root —f/a, whence the conclusion of the lemma
certainly holds in this case.

Assuming the result to be true in any field for all polynomials of degree
less than n, let us suppose that p(x) is of degree n over F. Let K be any
extension of F. If p(x) has no roots in K, then we are certainly done, for the
number of roots in K, namely zero, is definitely at most a. So, suppose that
p(x) has at least one root a € K and that a is a root of muluplicity m. Since
{I — a)™ fpl',:x}, m < n follows. Now p{x} = (_t' — a}"q{x:h where gf:_;] € K[.!'}
is of degree n — m. From the fact that (x — g)™*! ¥ p(x), we get that
(x — a) f q(x), whence, by the corollary to Lemma 5.3.1, a is not a root
of g(x). Il b # ais a root, in K, of p(x), then 0 = p(b) = (b — a)"q(b);
however, since b — a # 0 and since we are in a field, we conclude that
g(6) = 0. That is, any root of p(x), in K, other than a, must be a root of

_—
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q(5) Since g(x) is of degree n — m <nb
has at moOSt 7 — m roots in K, which,

EE_';’PHd m umes, tells us that p(x) has at
K. This curriplf:tts the induction and prov

Y our induction hypothesis, g(x)
together with the other root a,
most m + (n — m) = n roots in
es the lemma. FULALL 4

One shninuid pmn_t out that COmmutativity is essential in Lemma 5.3.2.
If we consider the ring of real quaternions, which falls short of being a field
only in that il_ flﬂilﬁ to be commutative, then the polynomial x* + 1 has at
|east 3 _T':'Utss b k [:"'l fact, it has an infinite number of roots). In a some-
what dlﬁ:tl'ﬂﬂl direction we need, even when the ring is commutative, that
it be an integral domain, for if ab = 0 with g # 0and b # 0 in the com-
mutative ring R, then the polynomial ax of degree 1 over R has at least
two distinct roots x = 0 and x = § in R.

The previous two lemmas, while interesting, are of subsidiary interest.
We now set ourselves to our prime task, that of providing ourselves with
suitable extensions of F in which a given polynomial has roots. Once this is
done, we shall be able to analyze such extensions to a reasonable enough
degree of accuracy to get results. The most important step in the construction
is accomplished for us in the next theorem. The argument used will be very
reminiscent of some used in Section 5.1.

THEOREM 5.3.1 If p(x) is a polynomial in F([x] of degree n = 1 and is
irreducible over F, then there is an extension E of F, such that [E:F] = n, in which
p(x) has a root.

L

Proof. L!._.i:t F[x] be the ring of polynomials in x over F and let V = 1O«
(p(x)) be the ideal of F[x] generated by p(x). By Lemma 3.9.6, V' is a '
maximal ideal of F[x], whence by Theorem 3.5.1, E = F[x]/V is a field.
This E will be shown to satisfy the conclusions of the theorem.

First we want to show that E is an extension of F; however, in fact, 1t is
not! But let F be the image of F in E; that is, F={a+V|aeF}). We
assert that F is a field isomorphic to F; in fact, if  is the mapping from
F[x] into F[x]/V = E defined by f(x)¢ =f(x) + V, then thf: rt:sl.r‘icl.inn
of  to F induces an ‘isomorphism of F onto F. (Prove!) Using this iso-
morphism, we identify F and F: in this way we can consider E to be an exiension
of F,

We claim that E is a finite extension of F of degree n = @cg p(x), for the
cements 1 + V, x + V, (x + V)2 =x"+ V,...,(x + V) =t b Vo
(x + V)=t = ¢»~1 4+ V form a basis of E over F, {FTD‘UE!]. For con-
venience of notation let us denote the element K =2 + V ‘m_r.hr: field
E as a. Civen f(x) € Fx], what 1s f(r.}lp? We claim that 1t 1s m-::r-::xl*y
[ (a), for, since Y o1s a homomorphism, if f(x) = ﬁuh'" fix + - . 3 ﬁnh:
then f(x)y = foy + (Bu¥)(x) + "+ (BH)), and using fhe

identification indicated above of BY with B, we see that f(x)¢ = f(a).
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222 Fields Ch.5

In particular, since p(x) e V, p(x)¥ = 0; however, p(x)¥ = p(a). T,
the element a = xy in E is a root of p(x). The field E has been shown 1o satisfy
all the properties required in the conclusion of Theorr:m_f:ﬂ_. I, and so th

theorem is now proved. antd L, D,

An immediate consequence of this theorem is the

_ COROLLARY | I £ (x) € F[x], then there is a finite extension E of F in whig
S (x) has a root.” Moreover, [E:F] < deg f(x).

Proof. Let p(x) be an irreducible factor of f(x); any root of p(x) is 4
- root of f(x). By the theorem there is an extension E of F with [E:F] <
deg p(x) < deg f(x) in which p(x), and so, f (x) has a root. |

Although it is, in actuality, a corollary to the above corollary, the nex
theorem is of such great importance that we single 1t out as a theorem,

THEOREM 53.2 Let f(x) € F[x] be of degree n > 1. Then there is an ex-
tension E of F of degree at most n! in which f(x) has n rools (and so, a full com-
plement of roots).

Proof. In the statement of the theorem, a root of multiplicity m is, of
course, counted as m roots.

By the above corollary there is an extension E; of F with [Ey:F] < nin
which f(x) has a root a. Thus in Ey[x], f(x) factors as f (x) = (x — a)q(x),
where g(x) is of degree n — 1. Using induction (or continuing the above
process), there is an extension E of E; of degree at most (n — 1)! in which
g(x) has n — 1 roots. Since any root of f (x) is either « or a root of g(x), we
obtain in E all n roots of f (x). Now, [E:F] = [E:E)][Ey:F] < (n—1)ln=n!
All the pieces of the theorem are now established.

Theorem 5.3.2 asserts the existence of a finite extension E in which the
given polynomial f(x), of degree n, over F has n roots. If f(x) = a,%" +
a, " ' + -+ a, ay # 0 and if the n roots in E are ay, ..., a,, making
use of the corollary to Lemma 5.3.1, f(x) can be factored over E as f (x) =
aglx — a,)(x — a;)***(x — a,). Thus f(x) splits up completcly over E
as a product of linear (first degree) factors. Since a finite extension of F
exists with this property, a finite extension of F of minimal degree exists which
also enjoys this property ol decomposing f (x) as a product of linear factors.
For such a minimal extension, no proper subfield has the property that
f (x) factors over it into the product of linear factors. This prompts the

DEFINITION If f(x) € F[x], a finite extension E of F is said to be 2
splitling field over F for f(x) if over E (that is, in E[x]), but not over any
proper subfield of E, S (x) can be factored as a product of linear factors.

: ]
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We reiterate: Theorem 5.3.2 guarantees for us the existence of splitling frelds.
{n fact, it 53Y5+cvt“ i lor it assures that given a polynomial ol degree
q over F there is a splitting field of this polynomial which is an extension of
F of degree at most n! over F. We shall see later that this upper bound of
nl 15 actually taken on; that is, given n, we can find a field F and a poly-
l nomial of degree n in F[x] such that the splitting field of f (x) over F has
: degree nl.

Equivalent to the definition we gave of a splitting field for f (x) over Fis
the statement: E 15 a splitting field of f(x) over Fif E is a mintmal exlension
of Fin which f (x) has n roots, where n = deg f(x).
An immediate question arises: given two splitting fields E, and £, of the
came polynomial f(x) in F[x], what is their relation to each other? At
| fist glance, we have no right to assume that they are at all related. Our
next objective is to show that they are indeed intimately related; in fact,
that they are isomorphic by an isomorphism leaving every element of F
fixed. It is in this direction that we now turn.

Let F and F’ be two fields and let 1 be an isomorphism of F onto F'.
For convenience let us denote the image of any a € F under 1 by a'; that
s, ar = a’. We shall maintain this notation for the next few pages.

Can we make use of t to set up an isomorphism between F[x] and F'[?],
the respective polynomial rings over F and F'7 Why not try the obvious?
For an arbitrary polynomial f (x) = aox" + a,x" "' + -+ + a, € F[x] we
define t* by f(x)t* = (ax" + "t s )t =t + i
R

It is an easy and straightforward matter, which we leave to the reader,

to verify.

L MMA 5.3.3 1* defines an isomorphism of F([x] onlo F'[t] with the property
that at* = o' for every a € F. A" N

Iff (x) is in F[x] we shall write f (x)t* asf'(t). Lemma 5.3.3 immediately
implies that factorizations of f(x) in F[x] result in like factorizations of
f'(t) in F'[t], and vice versa. In particular, f (x) is irreducible in F [x]
if and only if f'(t) is irreducible in F'[t].

However, at the moment, we are not particularly interested in polynomial
rings, but rather, in extensions of F. Let us recall that in the proof of
Theorem 5.1.2 we employed quotient rings of polynomial rings to obtain
suitable extensions of F. In consequence it should be natural for us to study
the relationship between F[I].l’(ffx]} and F'[t]/(S'(t)), where (f(x))
denotes the ideal gcnr_‘raltd by f (x) in F[x] and (f'(t)) that generated by

f'(t)in F’[t]. The next lemma, which is relevant to this question, is actually

Part of a more general, purely ring-theoretic result, but we shall content

Ourselves with it as applied in our very special setting.

— e — e —
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LEMMA 5.3.4  There is an isomorphism t** of F[x]/(f (x)) onto F'[t])( 1,
with the property that for everyw € F,at** = o', (x + (f(x)))T** =1 + {f’{;;-,J

Proof. Before starting with the proof proper, we should make clear Whay
1s meant by the last part of the statement of the lemma. As we have alread}.
done several times, we can consider F as imbedded in F[x]/( f(x)) .
identifying the element a € F with the coset & + (/(x)) in F[x]/(f ()
Similarly, we can consider F' to be contained in F'[t]/(f'(t)). Th
1somorphism 7** is then supposed to satisfy [a + (f (x))]T** ="+ (f'(1))

We seek an isomorphism t** of F[x]/(f(x)) onto F'[t]/(f'(1)),
What could be simpler or more natural than to try the t** defined by
[e(x) + (F(x)]e** = g'(t) + (f'(t) for every g(x) e F[x]? We leaye
it as an exercise to fill in the necessary details that the 7** so defined is we|
defined and is an isomorphism of F[x]/( f(x)) onto F'[t]/( f'(¢)) with the
properties needed to fulfill the statement of Lemma 5.3.4.

For our purpose—that of proving the uniqueness of splitting fields—
Lemma 5.3.4 provides us with the entering wedge, for we can now prove

THEOREM 5.3.3 If p(x) is irreducible in F[x] and if v is a root of p(x), then
F(v) s somorphic to F'(w) where w is a root of p'(t); moreover, this isomorphism
o can so be chosen that

l. vo = w.
2. aoc = o for every a € F.

Proof. Let v be a root of the irreducible polynomial p(x) lying in some
extension K of F. Let M = {f(x) e F[x] | f(v) = 0}. Trivially M is an
ideal of F[x], and M # F[x]. Since p(x) € M and is an irreducible poly-
nomial, we have that M = (p(x)). As in the proof of Theaorem 5.1.2, map
F[x] into F(v) « K by the mapping  defined by ¢(x)¢ = ¢(2) for every
g(x) € F[x]. We saw earlier (in the proof of Theorem 5.1.2) that y maps
F[x] onto F(v). The kernel of s is precisely M, so must be (p(x)). By the
fundamental homomorphism theorem for rings there is an isomorphism y*
of F[x]/(p(x)) onto F(v). Note further that ay* = a for every aeF.
Summing up: Y* is an isomorphism of F[x]/(p{x)) onto F(z) leaving
every element of F fixed and with the property that v = [x + (p(x)) V"

Since p(x) is irreducible in F[x], p’(¢) is irreducible in 7'[¢] (by Lemma
5.3.3), and so there is an isomorphism 0* of F'[t]/(p'(t)) onto F'(w) where
w is a root of p'(t) such that 0* leaves every element of F’ fixed and such
that [t + (p'(1)]0* = w.

We now stitch the pieces together to prove Theorem 5.3.3. By Lemma
5.3.4 there is an isomorphism t** of F[x]/(p(x)) onto F'[t]/(p'(t)) which
coincides with T on F and which takes x + (p(x)) onto ¢t + (p'(t)). Con
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qder the mapping ¢ = (¥*)™ '7**0* (motivated by

Fay2s x5 Pl 8 e
((x) (1)

of F(v) onto F'(w). It is an isomorphism of F(v) onto F'(w) since all the
mappng W*, ™%, and 0% are isomorphisms and onto. Moreover, since
g = i.‘l.' -+ [P{tj}]q’;*, DT = {p:lpt‘l]—lﬁt#ﬂt - {['c + {F':-"JIT**JH. _—
[t + (p'(1))]0* = w. Also, for xe F, ag = (2(y*)~ Ne##0* = (ar**)0% =
o0 = 2. We have shown that ¢ is an isomorphism satisfying all the
requirements of the isomorphism in the statement of the theorem. Thus
Theorem 3.3.3 has been proved.

A special case, but itsell of interest, is the

COROLLARY If plx) e F[x] is irreducible and if a, b are two rools of p(x), .
then F(a) is isomorphic lo F(b) by an isomorphism which takes a onto b and which

leaves every element of F fixed.

We now come to the theorem which is, as we indicated earlier, the

foundation stone on which the whole Galois theory rests. For us it is the
focal point of this whole section.
. (& Yot

THEOREM 5.3.4 'Any-splitting fields E and E' of the polynomials [ (x) € F[x]
and ['(1) € F'[t], respectively, are isomorphic by an isomorphism ¢ with the prop-
erly that a¢h = o' or every a € F. (in particular, any (wo splitting fields of the
same polynomial over a given field I are isomorphic by an isomorphism leaving every
element of F fixed.)

Proof.__\Ne should like to use an argument by induction; in order to do
so, we need an integer-valued indicator of size which we can decrease by

some technique or other. We shall use as our indicator the degree of some
splitting field over the initial field. It may seem artificial (in fact, 1t may
even be artificial), but we use 1t because, as we shall soon see, Theorem 3.3
provides us with the mechanism for decreasing it.

If[E:F] =1, then E = F, whence f(x) splits into a product of linear
factors over F itself. By Lemma 5.3.3 £'(t) splits over F' into a product of
“ -, - et - = E
linear factors, hence E' = F'. But then ¢ =1 provides us with an 1so-

morphism of E onto E' coinciding with T on F.
Assume the result to be true for any ficld Fq and any polynomial f(x) €

Fy[x] provided the degree of some splitting field E; of f(x) has degree less
than n over F,, that is, [Eq:Fol < 1

Suppose that [E:F] = n > |, where [ is a sphtung field of f( x) over F.
Since n > 1, f(x) has an irreducible factor p(x) of degree r > 1. Let
#'(t) be the corresponding irreducible factor of f'(t). Since £ splits f (x), a
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full complement of roots of f (x), and so, a priori, of roots of p(x), are ip E
Thus there is a v € E such that p(v) = 0; by Theorem 5.1.3, [F(v):F] < .-.
Similarly, there is a w € E’ such that p'(w) = 0. By Theorem 5.3.4 ll'l!'.'r{;
is an isomorphism ¢ of F(v) onto F'(w) with the property that qg = ,
for every a e F.

Since [F(v):F] =7 > 1,

e [BF &
[E:F ()] [F(v):F) e 7

We claim that E is a splitting field for f (x) considered as a polynomial gye,
Fy = F(v), for no subfield of E, containing F, and hence F, can splitflfx},
since E is assumed to be a splitting field of f (x) over F. Similarly E’ i,
splitung field for f'(t) over Fy = F'(w). By our induction hypothesis there
is an isomorphism ¢ of E onto E' such that a¢ = ag for all ae F,. By
for every aeF, aoc = a' hence for every aeF c Fy, a¢ = ao =a

This completes the induction and proves the thegrem.
& R o a0 0 o 1 I 1 F-..- b -

To see the truth of the “(in particular . )" -part, let F = F’ and let ¢
be the identity map ar = « for every a € F. Suppose that E, and E, are
two splitung fields of f(x) e F[x]. Considering E;, = £ o5 F and E, =
£’ o F' = F, and applying the theorem just proved, yields that E, and

L, are 1somorphic by an isomorphism leaving every element of F fixed.

In view of the fact that any two splitting fields of the same polynomial
over [ are isomorphic and by an isomorphism leaving every element of F
fixed, we are justified in speaking about the splitting field, rather than s
splitting field, for it is essentially unique.

Examples

1. Let F be any field and let p(x) = x* + ax + B, «, f € F, be in F[].
If K is any extension of F in which p(x) has a root, a, then the element

= —a — a also in K is also a root of p(x). If b = a it is easy to check
that p(x) must then be p(x) = (x — a)?, and so both roots of p(x) are in
K. If b # a then again both roots of p(x) are in K. Consequently, p(x)
can be split by an extension of degree 2 of F. We could alsé get this result
directly by invoking Theorem 5.3.2.

. !/‘, 2. Let I be the field of rational numbers and let f(x) = x* — 2. In the
field of complex numbers the three roots of f(x) are /2, 032, 3a,
where @ = (=1 + V3 i)/2 and where Y2 is a real cube root of 2. Now
F(3¥/2) cannot split x> — 2, for, as a subfield of the real field, it cannot

contain the complex, but not real, number wiy/2. Without explicitly
determining it, what can we say about E, the splitting field of x* — 2 over
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f? By Theorem 5.3.2, [E:F] < 3! = 6; by the above ru:mark,‘5nlw:|rrfr
g =2 is irreducible ovgr_F and since [F(U-E] :F] = 3, by 1]“;;31-(;.]‘1;”3, ;
Theorem 5.1.1, 3 = [FI3/2):F) | [E:F). Finally, [E:F] > [F(w.'?_,lif'] I=h.a
The only way out is [E:F] = 6. We could, of course, get lhl*j result DY
making two extensions F, = F{i"’?) and E = F,(w) and showing that @
catisfies an irreducible quadratic equation over F;.

3 Let F be the field of rational numbers and let
Leh f(x) = x* + x* + 1 e F[x).

{E‘."i’e claim that E = F(w), where w = (-1 + wﬁ-‘ré 1)[2, is f_-l splitting ficld
of f(x)- Thus [E:F] = 2. far short of the maximum possible 4! = 24.

' - =
e - , b —
T g— - e J'I. N e e .

'Frnhlems*..

1. In the proof of Lemma 5.3.1, prove that the degree of g(x) is one less
than that of p(x).

9. In the proof of Theorem 5.3.1, prove in all detail that the elements
1+ V, x+ V,...,x" ' + Vform a basis of E over F.

3. Prove Lemma 5.3.3 in all detail. . ' |
4. Show that t** in Lemma 5.3.4 is well defined and is an isomorphism

of F[x)/(/ (x)) onto F[t]/(S7(t))- | N
5. In Example 3 at the end of this section prove that F(w) is the sphitung
field of x* + x* + 1.
6. Let F be the field of rational numbers. Determine the degrees of the
splitting fields of the following polynomials over F.
(a) x* + L. (b) x* + 1.
(c) x* — 2. o (d) x* - L
(c) x° + x* + L.
7. If p is a prime number, prove that the splitting field over F, the ficld
of rational numbers, of the polynomial x” — 1 is of degree p — 1.
*#8. If n > 1, prove that the splitting field of x" — 1 over the ﬁ-::ld' of
rational numbers is of degree ®(n) where @ is the Eulf:riib-funcuc:n.
(This is a well-known theorem. I know :3[' no easy solution, so don’t
be disappointed il you fail to get it. If you get an casy prool, 1 would

L]

like to see it. ‘This problem occursn an equivalent form as Problem 15,
Section 5.6.) ‘

*Q If F is the field of rational numbers, find necessary and sufficient
conditions on a and & so that the splitting field of x2 4+ ax + b has
degree exactly 3 over F.

10. Let p be a prime number and let F = J,, the field ol integers mod p.
(a) Prove that there is an irreducible polynomial of degree 2 over F.
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7. Prove that the following polynomials are irreducible over the field |
rational numbers.
(a) 8x® — 6x — 1.
(b) x* = 2,
©) 2 $ % -0 -1

8. Prove that 2 cos (2x/7) satisfies x* + x* — 2x — 1. (Hint: Us
2 COS {21.”1?} i EIm'.fT o E-I".”.:]

9. Prove that the regular pentagon is constructible.

10. Prove that the regular hexagon is constructible.

I1. Prove that the regular 15-gon is constructible.

12. Prove that it is possible to trisect 72°.

13. Prove that a regular 9-gon is not constructible.

*14. Prove a regular 17-gon is constructible.

L )

e ——— . fo, ST - | Lf -

L.

T

" = ' ., '
*‘TJ'". 5:8 More about Roots '~ afas Ao
We return to the general exposition. Let F be any field and, as usual, |y
F[x] be the ring of polynomials in x over F.

DEFINITION [If £ (x) = ag¢" + ™! 4 -+ + 2@~ 4 ++- 4 a4
@, in F[x], then the derivative of f(x), written as f'(x), is the polynomial
0.0 S'(x) = nag@™t & (0 =D e b (1= DI guee g
£~ inF[x. = F

To make this definition or to prove the basic formal properties of the
derivatives, as applied to polynomials, does not require the concept of a
limit. However, since the field F is arbitrary, we might expect some strange
things to happen.

At the end of Section 5.2, we defined what is meant by the characteristic
of a field. Let us recall it now. A field F is said to be of characteristic 0if
ma # Ofora # 0in Fandm > 0, an integer. Ifma = 0 for some m > 0
and some a # 0 e F, then F is said to be of finite characteristic. [Ir this
second case, the characteristic of F is defined to be the smallest positive

integer p such that pa = 0 for all ae F. It turned ocul that il F is of fnie
characteristic then its characteristic £ 1s a prime number
! : T ;

We return to the question of the derivative. Let F be a field of character-

istic p # 0. In this case, the derivative of the polynomial x is px? ="' = 0.

Thus the usual result from the calculus that a P”'!r.’ |

: nomial whose derivative
1s 0 must be a constant no longer need hold true. However. il the charac-
3

teristic of F is O and if f'(x) = 0 for J(x) € F[x], it is indeed true that |
f(x) = aeF (see Problem 1). Even when the characteristic of F'5
p # 0, we can sull describe the polynomials with zero derivative: if
f'(x) = 0, then f (x) is a polynomial in x? (see Problem 2).

e — i ————————— e e T B L e ———— _.-J
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LEMMA 5+5-1 For ﬂﬂ_rf{le g(:] E F{'l'] and any a € F! ' Iu

LU + 80 = 1) + g 2

0. (@f (%) = 3 "(x).

3. (f(0e(x)) =S"(x)g(x) + f(x)g'(x).
Proof. The proofs of Parts 1 and 2 are ex

exercises. 10 prove part 3, note that from

prove it in the highly special case [ (x)

iand j are positive. But then J(x)g(x) = x4 whence (f(x)e(x)) =

00 Bowever, ['()g(x) = ix™1al = s )1 and £ (x)g'(a)

I71; conscquently, £ (x)g(x) + f (x)g'(x) = (i + j)x* I~ =

tremely easy and are left as
parts 1 and 2 it is enough to
= x' and g(x) = x/ where both

j.t"x""l = Jx
(f (x)e(x))".

Recall that in elementary calculus the equivalence is shown between the
existence of a multiple root of a function and the simultaneous vanishing of

the function and its derivative at a given point. Even in our setting, where
Fis an arbitrary field, such an interrelation exists.

LEMMA 5.5.2  The polynomial f (x) € F[x) has a multiple root if and only if \__.=
- [(x) and f'(x) have a nontrivial (thal is, of positive degree) common factor.

Proof. ::]_iefnrt proving the lemma proper, a related remark is in order, 7
namely, il f (x) and g(x) in F[x] have a nontrivial common factor in K[x], X’
for K an extension of F, then they have a nontrivial common factor in F [x].
For, were they relatively prime as elements in F[x], then we would be
able to find two polynomials a(x) and b(x) in F[x] such that a(x) f (x) +
b(x)g(x) = 1. Since this relation also holds for those elements viewed
- as elernents of K[x], in K[x] they would have to be relatively primt;:". 3

Now to the lemma itsell. From the remark just made, we may assume,
without loss of g.g]-'u:]-,a]i|;‘:.rr1| that the roots ﬂff [T} all iein F L'-:Hhr:n-'isc ex-
tend F to K, the splitting field of f (x))..1f f (x) has a multiple root «, then
f(x) = (x — «)™g(x), where m > 1. However, as is easily computed,
(¢~ @)™ = m(x — @)™ whence, by Lemma 55.I, f'(x) =
(- 0" (x) + m(x — a)™ ‘g(x) = (x — a)r(x), since m > 1. But t'hls
s2ys that f(x) and f'(x) have the common factor x — a, thereby proving
the lemma in one direction.

On- the other hand, if f(x) has no multiple root .thcn f(x) =
{""EI}{J: — o) (2 — ) where the a;'s are all distinct (we are

*Upposing f (x) to be monic). But then

Fl) = 3w E = ) (e - )

i=1
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where the A denotes the term 1s omitted. We claim no root of f (x) i-sal
root of ' (x), for |

S(2) = H (¢; — a;) # 0,
J®I
since the roots are all distinct. However, if f (x) and f'(x) have a nontrivi]
common factor, they have a common root, namely, any root of this commoy,
factor. The net result is that f(x) and f'(x) have no nontrivial commey
factor, and so the lemma has been proved in the other direction.

COROLLARY 1 {,"' S (x) € F[x] is irreducible, then '

|
1. If the characteristic of F is 0, f (x) has no multiple roots. .
2. If the characteristic of F is p # 0, f (x) has a multiple root only if it is of th

Jorm f (x) = g(x*).

Proof. Since f (x) is irreducible, its only factors in F[x] are 1 and f (x),
If f (x) has a multiple root, then f (x) and f’(x) have a nontrivial common
factor by the lemma, hence f (x) | f'(x). However, since the degree of (3
1s less than that of f(x), the only possible way that this can happen is for
JS'(x) to be 0. In characteristic 0 this implies that f (x) is a constant, which
has no roots; in characteristic p # 0, this forces f (x) = g(xF).

We shall return in a moment to discuss the implications of Corollary |
more fully. But first, for later use in Chapter 7 in our treatment of finite
fizlds, we prove the rather special

COROLLARY 2 If F is a field of characteristic p # 0, then the polynomial
%" — x € F[x], for n > 1, has distinct roots.

Proof. The derivative of x»" — x is p"x*"~"! — | = —1, since F is of |
characteristic p. Therefore, x*" — x and its derivative are certainly rela- |
tively prime, which, by the lemma, implies that *" — x has no multiple
roots.

Corollary 1 does not rule out the possibility that in characteristic p # 0
an irreducible polynomial might have multiple roots. To clinch matters,
we exhibit an example where this actually happens. Let F, be a ficld of
characteristic 2 and let F = Fy(x) be the ficld of rational functions in x
over F,. We claim that the polynomial t* — x in F[¢] is irreducible over F
and that its roots are equal. To prove irreducibility we must show that
there is no rational function in Fy(x) whose square is x; this is the content
of Problem 4. To see that {* — x has a multiple root, notice that its deriv-
ative (the derivative is with respect to ¢; for x, being in F, is considered as a
constant) is 2t = 0. Of course, the analogous example works for any prime
characteristic.

B ——
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Sec.5.5 More About Roots 235

Now that the possibility has been seen to be an actuality, it points oul
q sharp difference between the case of characteristic 0 and 1ha:t of churaF-
(eristic 2. The presence of irreducible polynomials with muluple rmls m
the latter case leads to many interesting, but at the same time complicating,
subtleties. These require a more elaborate and sophisticated treatment
which we prefer to avoid at this stage of the game. Therefore, we make f.!u
fiat assumption for the rest of this chapter that all fields occurring in the text material
proper are fields of charactenisiic 0.

DEFINITION The extension K of F is a simple extension of F if K = F(a
for some « in K.

In characteristic 0 (or in properly conditioned extensions in characteristic
p # 0; see Problem 14) all finite extensions are realizable as simple ex-
tensions. 1 his result is

THEOREM 5.5.1 If Fis of characteristic O and if a, b, are algebraic over F,
then there exists an element ¢ € F(a, b) such that F(a, b) = F(c). 19 v

s ——

Proof. iftf{x} and g(x), of degrees m and n, be the irreducible poly- -
nomials over F satisfied by a and b, respectively. Let K be an extension ~ -
of F in which both f (x) and g(x) split completely. Since the characteristic
of F is 0, all the roots of f (x) are distinct, as are all those of g(x). Let the
roots of f(x) be a = a;,ay,...,4a, and those of g(x), b = by, b,,...,0,

If j # 1, then b; # b, = b, hence the equation a; + 4b; = a, + Ab, =
a + Ab has only one solution 4 in K, namely,

Since F is of characteristic 0 it has an infinite number of elements, so we
can find an element y € F such that ¢; + yb; # a + yb for all 7 and for
all j # 1. Let ¢ = a + yb; our contention is that F(c) = F(a, b). Since
c€ F(a, b), we certainly do have that F(c) « Fla, ). We will now show
that both a and b are in F(c) from which it will follow that F(a, §) = F{@
Now b satisfies the polynomial g(x) gver F, hence satisfies g(x) considere
as a polynomial over K = F(c). Moreover, il A(x) = f(c — yx) then
h(x) € K[x) and h(b) = f (¢ — yb) = f(a) = 0, since a = ¢ — yb. Thus in
some extension of K, k(x) and g(x) have x — b as a common factor. We
assert that x — b is in fact their greatest common divisor. For, if b, # b
is another root of g(x), then A(b;) = f(c — yb;) # 0, since by our choice
ofy, ¢ — yb,forj # | avoids all roots a; ol f (x). :ﬁ.lsu, since (x — b)* .} g(x),
(x — )2 cannot divide the greatest common divisor of h(x) and g(x). Thus
x — b is the greatest common divisor of h(x) and g(x) over some extension
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~236 Fields Ch.5

of K. But then they have a nontrivial greatest common divisor over K
which must be a divisor of x — b. Since the degree of x — b 15 1, we see
that the greatest common divisor of g(x) and A(x) in K[x] is exactly x —p,
Thus x — b e K[x], whence b € K; remembering that K = F(c), we obtain
that be F(c). Since 2 = ¢ — yb, and since b,ce F(c), yeF < F(c), we
get that a e F(c), whence F(a,b) = F(c). The two opposite containing
relations combine to yield F(a, b) = F(c).

LY |
" '

3T . A simple induction argument extends the result from 2 elements to an}?
. . fnite number, that is, if a,, . .., «, are algebraic over F, then there is ap
" . clement ce F(gy,...,«,) such that F(c) = F(a,,...,a,). Thus the
r [} i irn r

COROLLARY  Any finite extension of a field of characteristic 0 is a simple extension,

Problems

. If F is of characteristic 0 and f (%) € F[x] is such that f'(x) =0
prove that f (x) = ax e F. ’

Z Il: F is of characteristic p #0 and if f(x) € F[x] is such that
S'(x) = 0, prove that f(x) = g(x*) for some polynomial g(x) e F[x].

3. f_’l‘ﬂ"ft that ( f (=) + g(x))’ =f'(2) + ¢'(x a4 i 6
of (&) for f (s), g(x) e Fl amd w e £, © ) o A (@)=

4. Prove that there is no rational function in F (x)

3. Complete the inducti '
5_5+1F’ uction needed to establish the corollary to Theorem

such that its square is x.

) A.r; :lema._:n]t ain a; Extl:nsiun K of Fis called separable oper F if it satisfies
polynomial over aving no multiple roots. An 1

. ; . extensio '

called separable over F if al] its elements are separable over ; i?ii:lgg

is called perfect if all finite extensions of F are separable
6. Show that any field of characteristic 0

1. (a) I Fis of characterist;
o ractenstic p # 0 show that for a,beF, (a + b =

15 perfect.

(b) If F is of characteristic P #0andif K

;= {ae K| a" € F for some n}.

1S an extension of F let
Prove that T js a subfield of

H'K., T, F are as in Problem 7(b) show
leaving every element of F fixed also Jea

*9. Show that a field F of characterict;
cteristi : .
for every a € F we can find 5 4 - :u,zh# 0 is perfect if and only if

. that b? = 4 !
10. Using the result of Problem 9, prove th .

that any automorphism of X
Ves every element of T fixed.

at any finite field s perfect.
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