

ADVANCED COMPUTER ARCHITECTURE

UNIT-1

PARALLEL COMPUTER MODEL

 The state of computing

 Multiprocessors and Multicomputer

 Multivector and SIMD computers

THE STATE OF COMPUTING:

 Modern computer are equipped with powerful hardware facilities driven by extensive

software package.

 To access state of the art computing, we first review historical milestones in the

development of computers.

 Basic hardware and software factors are identified in analyzing the performance of

computers.

COMPUTER DEVELOPMENT MILESTONES:

 Prior to 1945, computers were made with mechanical or electronically parts. The earliest

mechanical computer can be traced back to 500 BC in the form to the abacus used in china.

COMPUTER GENARATIONS:

 Over the past several decades, electronic computers have gone through roughly five

generation of developed of development. Each of the first three generation lasted about

10 years.

 The division of generation is marked primarily by major changes in hardware and

software technologies. Most features introduced in earlier generation have been passed to

later generations.

FIVE GENERATION OF ELECTRONIC COMPUTERS:

PROGRESS IN HARDWARE:

 As far as hardware technology is concerned, the first generation (1945-1954) used

vacuum tubes and relay memories interconnected by insulated wires.

 The second generations (1955-1964) to as marked by the use of discrete transistors,

diodes and magnetic ferrite coerces, interconnected by printed circuits.

THE FIRST GENERATION:

 From the architectural and software points of view, first generation computers were built

with a single central processing unit (cup) with performed serial fixed point arithmetic using a

program counter, branch instructions and an accumulator. The cup must be involved in all

memory access and input/out put (I/O) operations.

THE SECOND GENERATIONS:

 Index registers, floating-point arithmetic, multiplexed memory, and I/O processors were

introduced with second generation computers, high level language (HLLS), such as Fortran ,

Algol and cabal were introduced along with compilers. Subroutines libraries and batch

processing monitors.

THE THIRD GENERATIONS:

 The third generations was represented by the IBM/360-370 series, the CDC 6600/7600

series, Texas instruments ASC(Advanced Scientific Computer) and digital equipments PDP-8

series from the mid 1960 S to the mid 1970 S.

THE FOURTH GENERATION:

 Parallel computers in various architectures appeared in the fourth generation of computer

using shared or distributed memory or optimal vector hardware. Multiprocessing os , special

language and compilers were developed for parallelism. Software tools and environment were

created for parallel processing or distributed computing.

THE FIFTH GENERATION:

 These systems emphasive superscalar processors cluster computers and massively

parallel processing (MPP). Scalable and latency tolerant architecture are being adopted in MPP

system using advanced VLSI technologies, high density packaging and optical technologies.

ELEMENTS OF MODERN COMPUTERS:

 Hardware, software and programming elements of a modern computer system are briefly

introduced below in the context of parallel processing.

COMPUTING PROBLEMS:

 It has been long recognized that the concept of computer architecture is no longer

restricted to the structure of the bare machine hardware. A modern computer is an integrated

system consisting of machine hardware, an instruction set, system software, application

programs and user interfaces.

 For artificial intelligence (AI), the solutions demand logical interences and

symbolic manipulation these computing problems have been labelled numerical computing,

transaction processing, and logical reasoning. Some complex problems may demand a

combination of these processing models.

ALGORITHMS AND DATA STRUCTURE:

 Special algorithm and data structures are needed to specify the computations and

communication involved in computing problems. Most numerical algorithms are deterministic,

using regularly structured data. Symbolic processing may use heuristics or nondeterministic

searches overlarge knowledge bases.

HARDWARE RESOURCES:

 In addition, software interface programs are needed. These software interfaces include

file transfer systems, editors, word processors, device drivers, interrupt handless, network

communication programs,etc.., These programs greatly facilitated the portability of user program

on different machine architecture.

OPERATING SYSTEM:

 AN effective operating manages the allocation and deallocation of resources using the

execution of user programs. Beyond the OS, application software must be developed to

benefit the users. Standard bench mark programs are needed for performance evaluation.

 The mapping of algorithmic and data structure onto the machine architecture includes

processor scheduling, memory maps, interprocessors communication, etc., these activities

are usually architecture dependent.

SYSTEM SOFTWARE SUPPORT:

 Software support is needed for the development of efficient programs in high level

language. The source code written in a HLL must be first translated into object code by

an optimizing compiler. A loader is used to initiate the program execution through the OS

kernel.

 Resource binding demands the use of the compiler, assembler, loader and OS kernel to

commit physical machine resources to program execution. Ideally, we need to develop a

parallel programming environment with architecture independent languages compilers

and software tools.

COMPILERS SUPPORT:

 These are three compiler upgrade approaches pre-processor, precompiled and

parallelizing compiler. A pre-processor uses a sequential and a low level library of the

target computer to implement high level parallel constructs.

 The efficiency of the binding process depends on the efficiency of the binding process

depends on the effectiveness of the pre-processors, the precompiled, the parallelizing

compiler, the loader and the OS support. This has been proven useful in enhancing the

performance of parallel computers.

EVOLUTION OF COMPUTER ARCHITECTURE:

 The study of computer architecture involves both hardware organization and

programming software requirements. As seen by an assembly language programmer,

computer architecture is attracted by its instruction set, which include opcode, addressing

modes, registers, virtual memory etc..,

 From the hardware implementation point of view, the abstract machine is organized with

CPUs, caches, buses, microcode, pipeline, physical memory etc..,

LOOKAHEAD, PARALLELISM AND PIPELINING:

 Look ahead techniques were introduced to protect instructions order to overlap I/E

operations and to enable functional parallelism. Functional parallelism was supported by

two approaches.

 One is to use multiple functional units simultaneously and the other is to practice

pipelining at various processing levels.

FLYNN’S CLASSIFICATION:

 Michael Flynn(1972) introduced a classification of various computer architectures based

on notions of instructions and data streams.

 As conventional sequential machines is called SISD(Single instruction stream over a

single data stream) computers. The parallel computers are reserved for MIMD (Multiple

instructions stream over multiple data streams) machines.

 The SIMD and MISD models are more suitable for special-purpose computations. For

this reasons MIMD is the most popular model, SIMD next and MISD the least popular

model being application in commercial machines.

PARALLEL/ VECTOR COMPUTERS:

 Intrinsic parallel computers are those that executive programs in MIMD model. There are

two major classes of parallel computers namely, shared-memory multiprocessors and

message passing multicomputer.

 Memory-to-memory architecture supports the pipelined flow of vector operands directly

is mostly machine- dependent. The Linda approach using tuple spaces offers an

architecture-transparent communication level for parallel computers.

NEW CHALLENGES:

 The technology of parallel processing is the outgrowth of several decades of

research and industrial advances in microelectronics, printed circuits, high density packaging,

advanced processors, memory system peripheral devices, communication channels, languages

evolution, compiler sophistication, operating system, programming environments and application

challenges.

SYSTEM ATTRIBUTES TO PERFORMANCE:

 There are also many other factors affecting program behaviour, including algorithm

design, data structure language efficiency, programmer skills and compiler technology, It

is impossible to achieve a perfect match between hardware and software by merely

improving only a few factors without touching other factors.

 Consider the execution of a given program on a given computer. The simplest measure of

program performance is the turnaround time, which includes disk and memory access,

input and output activities compilation time, OS overhead and CPU from the memory

pipelines and then back to the memory pipelines and then back to the memory. Register-

to-register architecture use vector register to interface between the memory and

functional pipelines.

DEVELOPMENT LAYERS:

 A layered development of parallel computer is illustrated based on a classification by

Lionel Ni (1990). Hardware configurations differ from machine to machine even those of the

same model. The address space of a processor in a computer system varies among different

architectures. It depends on the memory organization, which is machine dependent.

Programming languages such as Fortran, c, c++, Pascal, Ada, Lisp and others can be

supported by most computers. However the communication models, shared variable versus

message passing.

SYSTEM ATTRIBUTES:

 The above five performance factors (IC , p , m , k , I) are influenced by four system

attributes, instruction set architecture, compiler technology, cup implementation and control

cache and memory hierarchy.

CLOCK RATE AND CPI:

 The cup (or simply the processor) of today’s digital computer is driven by a clock with a

constant cycle time. The inverse of the cycle time is the clock rate. The size of a program is

determined by its instruction count (Te). In terms of the number of machine instruction to be

executed in the program.

PERFORMANCE FACTORS:

 Let IC be the number of instructions in a given program, or the instruction count. The cup

time (T in seconds/program) needed to execute the program is estimated by finding the product

of the contributing factors.

 T=IC *CPI * J

 The CPI of an instruction type can be divided into two component terms corresponding to

the total processor cycles and memory cycles needed to complete the execution of the

instruction. Depending on the instruction cycle may involve one to as many as four memory

references.

 T=IC (P + M+ K) * J

 The based can also be written as T=IE*10-6/MIPS. Based on the system attributes

identified and the above derived expressions, we conclude by indicating the fact the MIPS rate of

a given computer is directly proportional to the clock rate and inversely proportional to the CPI.

FLOATING POINT OPERATIONS PERSECOND:

 Most complete intensive applications in science and engineering make heavy the use of

floating point operations. With prefix mega (106), giga (109), tera (1012) or peta(1015) this is

written as megaflops(m flops),gigaflops(g flops), teraflops or pet flops.

THROUGH PUT RATE:

 Another important concept is related to how many programs a system can execute unit

time called the system throughput Ws. In a multi programmed, system the system throughput is

often lower than the CPU throughput WP defined by

 WP =F/IC*CPI

 Note that WP= (MIPS) * 106/IE. The unit for WP is also programs/ second

the CPU throughput is a measure of how many programs can be executed per second, based only

on the MIPS rate and average program length (IE). Usually Ws<Wp due to the additional system

overheads caused by the I/O compiler and OS when multiple programs are interleaved for CPU

executing by multiprogramming or time sharing operations.

PROGRAMMING ENVIRONMENTS:

 The programmability of a computer depends on the programming environment provided

to the users. In fact the marketability of any new computer system depends on the

creation of a user friendly environment in which programming becomes a productive

understanding rather than a challenge.

 In fact, the original UNIX/OS kernel was designed to respond to one system call form the

user process at a time. Successive system calls must be serialized through the kernel.

IMPLICIT PARALLISM:

 An implicit approach uses a conventional language. Such as c, c++, Fortran or Pascal to

write the source program with parallelizing compiler. Being implicit success relies

heavily on the “intelligence” of a parallelizing compiler.

 This approach requires less effort on the part of the programmer. providing different

levels of program abstraction validation, testing , debugging and lurning performance

prediction and monitoring and lurning performance prediction and monitoring and

visualization support to aid program development, performance measurement and

graphics display and animation of compaction results.

MULTIPROCESSORS AND MULTICOMPUTER:

 Two categories of parallel computer are architecturally modelled below. These physical

models are distinguished by having a shared common memory or unshared distributed memories.

SHARED-MEMORY MULTIPROCESSORS:

 We describe below three shared-memory multiprocessors

models.

 Uniform memory- access (UMA) Model

 Nonuniform memory- access (NUMA) Model

 Cache-only memory architecture (COMA) Models.

THE UMA MODELS:

 In UMA multiprocessor model, the physical memory is uniformly shared by all the

processors. All processors have equal access time to all memory words, which is why it is called

uniform memory access.

EXPLICIT PARALLELISM:

 The second approach requires more effort by the programmer to development a source

Program using parallel deducts of c, c++, Fortran or Pascal. Parallelism is explicitly

specified in the user programs. This reduces the burden on the compiler to detect

parallelism.

 Special software tools are needed to make an environment more friendly to user groups.

Some of the tools are parallel extensions of conventional high-level languages. Others are

integrated environments which include tools memories are converted to caches.

 Besides the UMA, NUMA and COMA specified above other variation exist

multiprocessors.

REPRASENTATIVE MULTIPROCESSOR:

 Sever early commercially available multiprocessor are summarized. They represent four

classes of multiprocessor. The sequent summitry s81 belonged to a class near-upper

computer , the BBN TC-2000 represented the MPP class.

 Machine models are depicted. The shared memory is physically distributed to all

processors called local memories. The collection of all local memory forms a global

address space accessible by all processors.

 All clusters have equal access to the global memory. The cedar multiprocessor, built at

the University of Illinois, had such a structure in which cluster was an Alliant FX 180

multiprocessors.

THE COMA MODEL:

 A multiprocessor using cache-only memory assumes the COMA model. Early examples

of COMA machines include the Swedish Institute of computer science’s data dittusion

machine and tend all square research’s KSR-1 machine.

 The COMA model is a special case of a NUMA machine, in which the distributed main.

The boundary router may be connected to I/O and peripheral devices. Message passing

between any two modes involves sequences of router and channel, mixed types of nodes

are allowed in a heterogeneous multicomputer.

 The intermodal communication in a heterogeneous multicomputer. Is achieved through

compatible data representation and message- passing protocols.

REPRESENTSTIVE MULTICOMPUTER:

 Three early message-passing multicomputers are summarized with distributed processor/

memory nodes, such machines are better in achieving a scalable performance.

DISRIBUTED- MEMORY MULTICOMPUTERS:

 A distributed-memory multicomputer system is modelled. The system consists of

multiple computers often called nodes, interconnected by a message passing network. Each node

is an autonomous computer considering of a processor. Local memory and sometimes attached

disks or I/O peripherals.

MULTICOMPUTER GENERATION:

 Modern provides point-to-point static connection among the nodes. All local memories

are private and are accessible only by local processors. Suppose each line of code L2, L4 and L6

takes machine cycle to execute. The time required to execute the program control statements L1,

L3, L5 and L7 is ignored to simplify the analysis, Assume that K cycles are needed for each

interprocessor communication operation via the shared memory.

 Do all K=I.4

 Do 10= (K-1) * L+1, K* 1

 A (I) =B (I) + c (I)

 Continue

 Sum (K) =0

 Do 20=1.L

 Sum (K) = Sum (K) + A ((K-1) * L+ J))

 20 Continue

 End all

 The addition of each pair of partional sums requires K cycles through the

shared Memory. An I-level binary adder tree can be constructed to merge all the partial sums,

where I=log 2M. The adder tree takes I (K+1) cycles to merge the partial sums sequentially from

the leaves to the root of the tree. Therefore, the multiprocessors requires 2L+1(k+1) =2N

(m+ck+1) log2M cycles to produce the final sum.

THE NUMA MODELS:

 A NUMA multiprocessor is a shared-memory system in which the access time varies

with the location of the memory word.

 Some computer manufactures have multiprocessor (MP) extensions of their uniprocessor

(VP) product time. The UMA model is suitable for general purpose and time-sharing

application by multiple users. To coordinate parallel events. Synchronization and

communication among processors are done through using shared variable in the common

memory.

APPROXIMATED PERFORMANCE OF A MULTIPROCESSOR:

 This example exposes the reader to parallel program execution on a shared memory

multiprocessor system. Consider the following fortran program written for sequential execution

on a uniprocessor arrays A (I), B (I) and C (I) are assumed to have N elements.

L1: Do 10 I=1,

L2: A (I) =D (I) +C (I)

L3:10 Continue

L4: Sum=0

L5: Do 20 J=1, 2

L6: Sum=Sum +A (J)

L7: 20 Continue

MULTIVECTOR AND SIMD COMPUTER:

 We classify supercomputer either as pipelined vector machine

using powerful processors equipped with vector hardware, or as SIMD computer emphasizing

massive data parallelism.

VECTOR SUPER COMPUTER:

 A vector computer is often built on top of scalar processors. Program and

data are first loaded into main memory through a host computer, all instruction are first decoded

by the scalar control unit.

VECTOR PROCESSOR MODELS:

 Vector register are used to hold the vector operands, intermediate and final vector results.

 The vector functional pipeline retrieves operands from and put results into the vector

operands from and put results into the vector register. All vector register are

programmable in user instruction. Each vector register is equipped with a component

register used in successive pipeline cycles.

 The length of each vector register is usually fixed, say 64-bit component register in a

vector register in a Cray series super computer.

REPRESENTATIVE SUPERCOMPUTERS:

Over a dozen pipelined vector computers have been manufactured, ranging from

workstation to mini and supercomputers. The star dent 3000 multiprocessor equipped with vector

pipelines the convex C3 series, the DEC UAX 9000, the IBM 390/VF, the Cray research Y-MP

family, the NEC SX series the jujitsu VP 2000 , and the Hitachi S-810/20.

SIMD SUPPERCOMPUTERS:

 An operational model of SIMD computers is presented the based on the work of H.J Siegel.

 An operational model of an SIMD computer is specified by a 5-tuple

M= (N, C, I, M, R)

Where,

(1) N is the number of processing elements (PES) in the machine. For example, the Iliac 1v had 64

PES and the connection machine CM-2 had 65,536 PES.

(2) C is the set of instruction directly executed by the control unit (CU), including scalar and

program flow control instruction.

(3) I is the set of instruction broadcast by the CU to all PEs for parallel execution. These include

arithmetic, logic, data routing, masking and other local operations PE over data within that PE.

(4) M is the set of masking schemes, where each mask portions’ the set of PES into enabled and

disable subsets.

(5) R is the set of data-routing functions specifying various patterns to be set up in the

interconnection network for inter-PE communication.

REPRESENTATIVE SIMD COMPUTERS:

 Three early commercial SIMD computers are summarized. The number of Peps in these

systems from 4096 in the DAP610 to 16,384 in the masper MP-1 and 65,356 in theCM-2.

Both the CM-2 and DAP 610 were fine gain, bit-slice SIMD computers with attached

floating-point acceleration for blocks of PES.

 The CM-2 implementation 16 PES as a mesh on a single chip. Each 16-PE mesh placed

at one vertex of a 12 dimensional hypercube. Thus 16*12 12=216=65, 536 PES formed the

entire SIMD array.

UNIT -2

PROGRAM AND NETWORK PROPERTIES

 Conditions of parallelism

 Program partitioning and scheduling

 Program flow mechanisms

 System interconnect architectures

CONDITIONS OF PARALLELISM:

 The exploitation of parallelism has created a new dimension in computer

science. In order to move parallel processing into the mainstream of

computing.

 A theoretical treatment of parallelism is thus needed to build a basis for the

above challenges. In practise parallelism appears in various forms in a

computing environment.

DATA AND RESOURCE DEPENDENCES:

 The ability to execute several program segments in parallel requires each

segment to be independent of the other segments.

 We use a dependence graph to describe the relations. The nodes of a

dependence graph correspond to the program statements and the directed

edges with different labels show the ordered relations among the statements.

DATA DEPENDENCE:

 The ordering relationship between statements is indicated by the data dependence.

Five types of data dependence are defined below.

 Flow dependence

 Antidependence

 Output dependence

 I/O dependence

 Unknown dependence

FLOW DEPENDENCE:

 A statement S2 is flow dependent on statement s1 it an execution path exists from s1

to s2 and it at least one output of s1 feeds in as input s2. Flow dependence is depended as

𝑠1 → 𝑠2.

ANTIDEPENDENCE:

 Statement s2 is antidependence on statement s1 it s2 follows s1 in program order and

it the output of s2 overlaps the input to s1.

OUTPUT DEPENDENCE:

 Two statements are output dependent it they produce the same output variable 𝑠1 →

𝑠2 indicates output dependence from s1 to s2.

I/O DEPENDENCE:

 Read and write are I/O statement I/O dependence occurs not because the same

variable is involved but because the same life is referenced by both I/O statements.

UNKNOWN DEPENDENCE:

1) The subscript of a variable is itself subscribed.

2) The subscript does not contain the loop index variables.

3) A variable appears more than once in with subscript having different coefficients of

the loop variable.

4) The subscript is nonlinear in the loop index variable.

CONTROL DEPENDENCE:

 This refers to the situation where the order of execution of statements cannot be

determined before run time. For example, conditional statements will not be resolved until

run time. In the following, we show one loop example with and another without control

dependent iterations.

 Do 201= 1, N

 A (1) = c (I)

 IF (A (I).L.T.O) A (1) =1

 20 Continue

The following loop has control dependent iterations:

 Do 101=1, N

 IF (A (I-1). EQ.O) A (I) =0

 10 Continue

Control dependence often prohibits parallelism from being exploited.

RESOURCE DEPENDENCE:

 This is different from data or control dependence, which demands the independent of

the work to be done. Resource dependence is connected with the conflicts in using shared

resources.

BERNSTEIN’S CONDITION:

 In 1966 Bernstein revealed a set of conditions based on which two process

carexcault in parallel.

 Similarly, the output set consists of an output variable generated after

execution of the process.

 Now, consider two process p1 and p2, I1 and I2, Q1 and Q2.

Formally, these conditions are stated follow:

𝐼1 ∩ 𝑂2 = ∅

𝐼2 ∩ 𝑂2 = ∅

01 ∩ 𝑂2 = ∅

PROGRAM PARTITIONING AND SCHEDULING:

GRAIN SIZES AND LATENCY:

 Grain size or granularity is a measure of the amount of computations involved

in a software process.

 The simplest measure is to count the number of instructions in a grain.

 Latency is a time measure of the communications overhead incurred between

machine subsystems.

INSTRUCTION LEVEL:

 At the lowest level. A typical grain consists less than 20 instructions called fine grain.

Depending on individual program. Depending on individual program fine-grain parallelism at

this level may range from two thousand. But level has shown single-instruction stream

parallelism is greater than two, wall finds that the average parallelism at instruction level is

ground fine environment.

LOOP LEVEL:

 This corresponds to the interactive loop operations. A typing loop contains less than

500 instructions.

PROCEDURE LEVEL:

 This level corresponds low medium- grain parallelism at the task procedural,

subroutine continue level.

SUBPROGRAM LEVEL:

 This corresponds to the level of job steps and related subprogram.

JOB LEVEL:

 This corresponds of the parallel execution essentially into parallel computer. The

grain size can be as high as millions of instructions in a single program.

COMMUNICATION LATENCY:

 By balancing granularity and latency, one can achieve better performance of computer

system. Various laterices are attributes to machine architecture, implementing technology and

communication patterns involved.

GRAIN PACKING AND SCHEDULING:

 Two fundamentals question to art in parallel program are.

1) How can is we partition a program in parallel branches.

2) What’s the optimal size of concurrent grains computation?

This grain-size problem demands determine of both the number and the size of grain

in a parallel program.

STATIC MULTIPROCESSORS SCHEDULING:

DODE DUPLICATION:

 In order to laminate the idle time and to further reduce the communications blacks

among processor, one can duplicate some of the node in more one processor.

 Four major steps are involved in the grain determination and the process of scheduling

optimization.

STEP 1: Construct a fine-grain program graph.

STEP 2: Schedule the fine-grain computation.

STEP3: Perform grain packaging to produce the course grains.

STEP4: Generate a parallel schedule based on the packed graph.

PROGRAM FLOW MECHANISMS:

 Conventional computers are based on a control flow mechanism by which the

order of program execution is explicitly stated in the user programs.

 Data flow computers emphasize a high degree of parallelism at the finr-grain

instructional level.

CONTROL FLOW VERSUS DATA FLOW:

 Conventional V on Neumann computer use a program counter (PC) to

sequence the execution of instructions flow in a program. This sequential

execution style has been called control-driven. As program flow is explicitly

controlled by programmers.

 In a dataflow computer, the execution of an instruction is driven by data

availability instead of being guided by a program counter. The instruction in a

data- driven program is not ordered in any way.

 Computational results (data tokens) are passed directly between instructions.

The data generated by an instruction will be duplicated into many copies and

forwarded directly to all needy instructions.

DATAFLOW ARCHITECTURE:

 There are having been quite a few experimental dataflow computer projects arrived

and his associates at MIT developed a tagged token architecture for building dataflow

computers. The global architecture consists of N processing elements (PES) interconnected

by an n×n roaling network.

 Another synchronization mechanism called the 1-structure is provide within each PE.

The 1-structure is tided memory unit for ever lapped usage of a data structure by both

producer and consumer processes.

DEMAND DRIVEN MECHANISMS:

 In a reduction machine, the computation is triggered by the demand for an operation’s

result. Consider the evaluation of a nested arithmetic expression 𝑎 = ((𝑏 + 1) × 𝑐 −

(𝑑 ÷ 𝑒)). The data driven computation seen above choose a bottom-up approach starting

from the intermost operation b+1 and 𝑑 ÷ 𝑒, then proceding to theX operation and finally to

the outermost operation−.

 A demon-driven computation chooses a top down approach, because operations are

executed only with their results are required by another instruction.

REDUCTION MACHINE MODELS:

 In a graph reduction model, the expression is represented as a directed graph. The

graph is reduced by evaluation of branches or sub graphs can be reduced or evaluated in

parallel upon demand.

COMPARISON OF FLOW MECHANISMS:

 The degree of explicit control decreases from control driven to demand driven.

 Furthermore, control tokens are used in control flow computers and reduction

machines, respective the listed advantages and disadvantages of the reduction

machine models are based on research finding rather than on extensive

operational experience. Models are based on research finding rather than on

Extensive operational experience.

SYSTEM INTERCONNECT ARCHITECTURES

 Static and dynamic networks for interconnecting computer subsystem or for

constructing multiprocessors or multicomputer are introduced below. These networks can be

used for internal connections. Among processors, modules and I/O adaptors in centralized

system multicomputer nodes.

NETWORK PROPERTIES AND ROUTING:

 The topology of an interconnection network can be either static or dynamic. Static

networks are formed of point-to-point point direct connections which will not change during

program execution. Dynamic networks include buses, crossbar switches, multistage networks

and routers which are often used in shared memory multiprocessors.

 Node degree and network diameter

 Bisection width

 Data routing functions

 Permutations

 Perfect shuffle and exchange

 Hypercube routing functions

 Broadcast and multicast

 Network performance

NODE DEGREE AND NETWORK DIAMETER:

 The number of edges (links or channels) incident on a node is called the node degree

d. In the case of indirections channels, the number of channels into a node degree reflects the

degree and that out of node degree reflects the degree and that out of node in the out degree.

BISECTION WIDTH:

 When a given network is cut into two equal halves, the minimum number of edges

along the cut is called the channels bisection width b. Then the wire bisection width is

B=BW. This parameter B is fixed the channel width (in bits) W=B/b.

DATA ROUTING FUNCTIONS:

 A data routing network is used for inter PE data exchange. This routing network can

be static, such as the hypercube routing network used in the TMC/CM-2, dynamic such as the

multistage network used in the IBM GFII.

 Commonly seen data routing function among the PES include shifting, rotation

permutation (one-to-one), broadcast (one-to-all), multicast (one-to-many), shuffle exchange

etc..,

PERMUTATIONS:

 N objects, there are n! Permutation by which the n objects can be reordered.

The set of all permutations from a permutation group with respect to

composition operation.

 One can use cycle notation to specify a permutation function.

PERFECT SUFFLE AND EXCHANGE:

Perfect shuffle is a special permutation function suggested by Harold Stone (1971) for

parallel processing application.

HYPERCUBE ROUTING FUNCTIONS:

 A three dimensional binary cube network. Three routing function are defined by three

bits in the node address.

 For example, one can exchange the data between adjacent nodes which differ in the

least significant bit C0.

BROADCAST AND MULTICAST:

 Broadcast is a one-to-all mapping. This can be easily achieved in an SIMD computer

using a broadcast bus extending from the array controller to all PES.

 A message passing multicomputer also has mechanisms to broadcast messages.

Multicast corresponds to a mapping from one PE to other PES (one-to-many).

NETWORK PERFORMANCE:

 To summarize the above discussion the performance of an interconnection network is

affected by the following factors.

1) FUNCTIONALITY:

This refers to how the network supports data routing, interrupt handling,

synchronizaization, request/ message combining and coherence.

2) NETWORK LATENCY:

 This refers to the worst case time delay for a unit message to be transferred through

the network.

3) BANDWIDTH:

This refers to the maximum data transfer rate, in terms of Mbytes/s through Gbytes/s,

transmitted through the network.

4) HARDWARE COMPLEXITY:

This refers to implementation costs such a those for wires, switches, connectors,

arbitration and interface logic.

5) SCALABILITY:

 This refers to the ability of a network to be modularity expandable with a scalable

performance with increasing machine resources.

STATIC CONNECTION NETWORKS:

 Static networks use direct links which are fixed once built. This type of network is

more suitable for building computer where the communication patterns are predictable or

implementable with static connections.

LINEAR ARRAY:

 This a one-dimensional network in which N nodes are connected by N-1 links in a

line. Internal nodes have degree 2, and the terminal nodes have degree 1, the diameter is N-1

which is rather long for large N. The bisection width b=1.

RING AND CHORDAL RING:

 A ring is obtaining by connection the two terminal nodes of a linear array with one

extra link. A ring can be unidirectional or bidirectional.

 It is symmetric with a constant node degree of 2. The diameters is (N/2) for a

bidirectional ring, and N for unidirectional ring.

BARREL SHIFTER:

The barrel shifter is obtained from the ring by adding extra links from each node to those

nodes having a distance equal to an integer power of 2.

TREE AND STAR:

 A binary tree of 31 nodes in five levels. In general, a k level, completely balances

binary tree should have is 3 and the diameter is 2 (k-1) with a constant mode degree the

binary tree is a scalable architecture.

FAT TREE:

The conventional tree structure used in computer science can be modified to become

the fat tree as introduced by leadsperson in 1985 the channel width of a fat root the idea of

binary fat trees can also be extended to multiway fat trees.

MESH AND TORUS:

 A 3*3 example mesh network is shown. The mesh is a frequently used architecture

which has been implemented in the Iliac IV MPP DAP and Intel paragon with

variations.

 In general a k-dimensional mesh N=nK nodes has an interior node degree of 2k and the

network diameter is k (n-1) the node degrees at the boundary and corner nodes are 3 or

2.

SYSTOLIC ARRAYS:

In general static systolic arrays are pipeline with multidirectional flow of data streams

the commercial machine Intel in app system was designed with a systolic architecture.

HYPER CUBES:

This is a binary n-cube architecture which has been implemented in the IPSc, n cube,

and cm-2 systems. In general an n-cube consists of n=2n nodes spanning along n dimensions

with two nodes per mention.

CUBE – CONNECTED CYCLES:

This architecture is modified from the hypercube. A 3- cube is modified to from 3-

cube connected cycle. This idea is to cut off the corner nodes (vertices) of the 3-cube and

replace each by a ring (cycle) of 3 nodes.

A k-cube can be thus transformed to a k-ccc with k*2k nodes.

K-ARG N-CUBE NETWORKS:

Rings, meshes, tori binary n-cubes (hyper cubes) and omega networks are

topologically isomorphic to a family of k- ary n-cube networks.

The parameters n is the dimension of the cube and k is the radix or the number of

nodes along each dimension.

NETWORK THROUGHPUT:

The network throughput is defined as the total number of message the network can

handle per unit time one method of estimating throughput is to calculate the capacity of a

network the total number of message that can be in the number network at once.

Low dimensional network reduce contention because having in more resource sharing

and thus a better querying performance than having many low bandwidth channels. Consider

a hyper cube with N=2n nodes.

DYNAMIC CONNECTION NETWORKS:

Multipurpose or general – purpose application, we many need to use dynamic

connections which can implement all communication patterns based on program demands in

increasing order of cost and performance, dynamic connection network include bus systems

multistage inter connection networks (MIN), and crossbar switch networks.

DIGITAL BUSES:

A bus system in essentially a collection to wires and connector for data transaction

among processors memory modules and peripheral devices to the bus the activate or master

devices requests to address the memory.

SWITCH MODULES:

An a*b switch module has a inputs and b outputs. A binary switch corresponds to a

2*2 switch module in which a=b=2 in theory a and b do not have to be equal how ever in

practice a and b are often chosen as integer powers to 2; that is, a=b=2k for some K 1

MULTISTAGE INTERCONNECTION NETWORK:

MINS have been used in both MIMD and SIMD computer a number of a*b switches

are used in each stage. Fixed Inter stage connections are used between the switches in

adjacent stages the switches are simplest module would be the 2*2 switches (a=b=2).

OMEGA NETWORK:

A 16*16 OMEGA NETWORK FOUR STAGES OF 2*2 switches are needed there

are 16 inputs on the left and 16 outputs on the right the ISC pattern is the Perfect Shuffle over

16 objects.

BASE LINE NETWORK:

 Wu and fang (1980) have studied the relationship among a class of multistage inter

connection networks.

 The fruit stage contains on n*n.

CROSSBAR NETWORK:

 The highest bandwidth and inter connection capability are provided by crossbar

networks. A crossbar network can be virtualized as a single stage switch network.

 To build a shared memory multi processor one can use a crossbar network between the

processors and memory modules block and the second stage contains two (N/2)*(N/2)

sub blocks labeled co and c1 the construction process can be recursively applied to the

sub blocks until the N/2 sub blocks of size 2*2 reached.

 Another type of crossbar network is for inter processor communication and is depicted.

This large crossbar (224*224) was actually built in a vector parallel processor (vpp

500) by jujitsu inc. the PES are processors with attached memory. The inter processor

crossbar provides permutation connection among the processors.

 Another problem with the bus is that it is prone to failure. Some fault tolerant system

like the tandem tolerant system processing used dual buses to protect the system from

single failures.

 The crossbar switch is the most be pensive one to built, due to the most hardware

complicity increases as n2 for a small.

UNIT-3

PROCESS AND MEMORY HIERACHY

 Advanced processor technology

 Super scalar and vector processors

 Linear pipeline processors

 Nonlinear pipeline processors

ADVANCED PROCESSOR TECHNOLOGY:

 Architectural families of modern processors are introduced below,

from processors used in workstation or multiprocessors to those

designed for mainframes and supercomputer.

 The major processor families to be studied include the CISC,

RISC, Superscalar, and VLIM, Super pipeline, vector and symbolic

processors.

DESIGN SPACE OF PROCESSORS:

 Various processor families can be mapped onto a coordinated space of

clock rate versus cycles per instruction (CPI). As implementation technology

evolutes reality, the clock rates of various processors have moved from low to

higher speeds toward the right of the design space.

DESIGN SPACE

 CISC:

 Complex – instruction – set computing.

 Clock rate to today’s CISC processor range up to a few GHZ. CPI

varies 1-20 upper part design space.

EX: Intel Pentium, IBM 390...

 RISC:

 Reduced – instruction – set computing.

 With the use if pipelines it reduced the CPI.

 EX: SPARC, Power series, MIPS, Alpha..

SUPER SCALAR PROCESSORS:

RISC subclass processor is super scalar processors, it allows multiple

instructions to be issued simultaneously during each cycle. CPI of super scalar

processor clock rate of super scalar processors matches that of scalar PISC

processor.

VLIW:

 Very long instruction word.

 It has more function units than super scalar processors. CPI is

lowered.

EX: Intel’s I860 RISC processors

VP:

 Vector processor.

 CPI is very low. Lower right corner, If lower right corner is

restricted by processor design cost and power.

INSTRUCTION PIPELINE:

The exception cycle of a typical instruction includes four phases:

 Fetch

 Decode

 Execute

 Write back

There instruction phases are often execute by an instruction pipeline as

demonstrate.

PIPELINE OPERATION:

INSTRUCTION PIPELINE CYCLE:

The clock period of the instruction pipeline.

INSTRUCTION ISSUE RATE:

The time required between the issuing of two adjacent instructions.

INSTRUCTION ISSUE RATE:

The number of instructions issued per cycle, also called the degree of a

super scalar processor.

SIMPLE OPERATION LATENCY:

Simple operations make up the vast majority of instruction executed by

the machine such as integer adds loads, stores, branches, moves, etc...

RESOURCE CONFLICTS:

 This refers to the instruction where two or more instructions demand use

of the same functional unit at the same time.

 A base scalar processor is defined as a machine with one instruction

issued per cycle one cycle latency for a simple operation and one cycle

latency between instruction issues.

 The control unit generation control signals required for the fetch diode,

ALU operation memory access and write result phases of instructions

executions the control unit itself may employ hard writing logic or as was

more common in order CISC style processors – micro coded logic.

INSTRUCTION SET ARCHITECTURE:

The instruction set of a computer specific the primitive commands or

machine instruction that a programmer can use in an instruction set is attributed

to the instruction formats date format opcode specification and flow control

mechanisms used.

Complex instruction sets:

In the early days of computer history most computer feminism started with an

instruction set which rather Simple the main reason for being simple than was

the high cost of hardware.

REDUCED INSTRUCTION SETS:

 After two decodes of using CISC processors. Computer designers

began to revaluate the performance relationship between

instruction set Architecture and available hardware/software

technology.

 A RISC instructions set typically contains less than 100,

instructions with a fixed instruction format (32 bits).

 The resulting benefits include a higher clock rate and a lower CPI,

which lead to higher processor performance.

DIFFERENCE BETWEEN RISC AND CISC:

ARCHITECTURAL DISTINCTIONS:

 Hardware features built into CISC and RISC processors are

compared below, some of the distinctions have since disappeared,

however because processors are now designed with features from

both types.

 The use of micro programmed control was found in traditional

CISC, and hard wired control in most RISC. Thus control memory

(ROM) was needed in earlier CISC processors, which showed

down the instruction execution.

 The large number of instruction used in a CISC and RISC processor are

comparable. The result of using variable format instruction. Integer, floating,

point and vector data and of using over a dozen different model. On the other

hand most RISC processors use 32-bit instructions which are predominately

register based.

CISC SCALAR PROCESSORS:

 A scalar processor executes with data. The simplest scalar processor

executes integer instruction using fixed point operation. More capable scalar

processors execute both integer and floating point operations. A modern scalar

processor may possess both an integer until and a floating penitent, or even

multiple such units.

REPRESENTATION CISC PROCESSORS:

 The VAX 8600 processors were built on a PC board. The i486 and

M68040 were single chip microprocessors. These two processors families are

still in use at present.

CISC MICROPROCESSORS FAMILIES:

 Motorola produced its 8-bit microprocessor the MC68030 in 1974, then

came the MC68030 and MC68040 in the Motorola MC680x0 family national

semi conductions 32-bit microprocessors NS32532 was introduced in 1988.

RISC SCALAR PROCESSORS:

 The RISC design gains its power by pushing some of the less frequently

used operations into software. The reliance on a good compiler is much more

demanding in RISC processors than in CISC processors. Instruction level

parallelism is exploited by pipelining in both processors architecture.

REPRESENTATIVE RISC PROCESSOR:

 Four representatives RISC based processors from the year 1990. the sun

SPARC Intel i860, Motorola M88100, and AMD 29000 are summarized. All of

these processor use 32-bit instruction.

THE RISC IMPACTS:

 The debate between RISC and CISC designers lasted for more than a

decade. Based on one reported experiment, converting form a CISC program to

an equivalent RISC program increases the code length by only 40%.

CISC AND RISC SCALAR PROCESSORS:

SUPERSCALAR AND VECTOR PROCESSORS:

 A CISC or a RISC scalar processor can be improved with a super scalar

or vector architected scalar processor those executing one instruction per cycle

only instruction is issued per cycle. And only one completion of instruction is

expected from pipeline per cycle.

SUPERSCALAR PROCESSORS:

 Superscalar processors are designed to explicit more instruction level

parallelism in user programs. Only independent instruction can be executed in

parallel without causing a wait state.

PIPELINING IN SUPERSCALAR PROCESSORS:

 The fundamental structure of a three issues pipeline, superscalar

processors were originally developed as an alternative to vector processors, with

a view to exploit higher degree of instruction level parallelism.

 Superscalar processors of degree M can issues m instruction per cycle. In

this scene, the base scalar processor, implemented either in RISC or CISC, has

m=1. In order to fully utilize a superscalar processor of degree m, m instruction

must be executable in parallel.

REPRESSENTATIVE SUPERSCALARE PROCESSOR:

 A number of commercially available processes have been

implanted with the superscalar architecture. Notable arly ones

include the IBM Rs16000, DEC Alpha 21064, and Intel i960

CA processors as summarized.

 Due to the reduced CPI and higher clock rates, used generally

superscalar processors outperform scalar processors.

THE VLIW ARICHITECTURE:

 The VLIW architecture is generalized from low well established

concepts. Horizontal micro coding and superscalar processing. A typical

VLIW (Very Long Instruction Word). Machine has instruction words

hundreds of bits in length.

 different fields of the long instruction word carry the op codes to be

dispatched to different functional units this code compaction must be

done by a compiler which can predict branch out comes using elaborate

heuristics heuristic or run time statistics.

PIPELINING IN VLIN PROCESSORS:

 The execution of instruction by an idea VLIN processors in

multiple operation VLIN machines behave much like superscalar

machines with three difference.

 First the eliciting of VLIN instruction is easier than that of

superscalar instructions.

 Second the code density of the superscalar machine is better when

the available instruction level parallelism is less than that

exploitable by the VLIN machine this is because the fixed VLIN

format includes bits for non executable operations while the

superscalar processors issues only executable instructions.

 Third a superscalar machine can be object mode compatible with a

large family of non parallel machine.

VLIN OPPORTUNITIES:

 In a VLIN architecture random parallelism among scalar

operations I exploited instead of regular or symhronous parallelism

as in a vectorized super computer or in an SIMD computer

 In general purpose applications the architectural may not be able to

perform well although the idea seems sounds in theory the

dependence on trace scheduling compiling and code compaction

has prevented it from gaining acceptance in the commercial world.

VECTOR AND SYMBOLIC PROCESSORS:

A vector processors can assume either a register to register vector

processors like Cray super computer denote a vector register of length n as V1a

scalar register as s1 and memory array of length n as m (1:n) typical register

based vector operations are listed below where a vector operator is denoted by a

small circle “o”

V1 o v2 - v3 (binary vector)

S1 o v1 - v2 (scaling)

V1 o v2 - s1 (binary reduction)

M (1: n) - v1 (vector load)

v1 - m (1: n) (vector store)

O v1 - v2 (unary vector)

O v1 - v1 (unary reduction)

Memory based vector operations are found in memory to memory vector

processors such as those in the early super computer CDC cyber 205 listed

below are a few examples.

m1 (1: n) o m2 (1: n) - m (1: n)

 S1 o m1 (1: n) - m2 (1: n)

 O m1 (1: n) - m2 (1: n)

m1 (1: n) o m2 (1: n) - m2 (1: n)

Where m1 (1: n) and m2 (1: n) are two vector of length n and m (k)

denotes a scalar quantity stored in memory location k.

VECTOR PIPELINE:

Vector processors take advantage of unrolled loop level parallelism the

vector pipelines can be attached to any scalar or super scalar processors.

SYMBOLIC PROCESSORS:

Symbolic processing has been applied in many areas including theorem

proving pattern recognition expert systems knowledge engineering text retrial

cognitive science and machine intelligence list processors or symbolic

manipulations these characteristics.

LINEAR PIPELINE PROCESSORS:

Cascade of processing affixed function over a stream of data flowing one

end to other in modern computer linear pipelines applied for

 Instruction Execution

 Arithmetic Execution

 Memory Access Operations

Depending on control of data flow in linear pipeline has two categories

 Asynchronous Pipeline Model

 Synchronous Pipeline Model

ASYNCHRONOUS AND SYNCHRONOUS MODEL

A linear pipeline processors is constructed with k processing stages

external inputs are fed into the pipeline at the first stage s1 the processed results

are passed from s1 to stage si+1, for all i=1,2,……k-1 the result emerges from

the pipeline at the last stage sk.

ASYNCHRONOUS MODEL:

Asynchronous pipeline are useful in designing communication channels

in message passing multicomputer where pipelined worm whole routing

through put rate different amounts of delay may be experienced in different

stages.

SPEED UP EFFICIENCY AND THROUGH PUT:

Linear pipeline of k stages can process n tasks in k+ (n-1) clock cycles

where k cycle is needed to complete. The execution of the very first task and the

remaining n-1 tasks require n-1 cycles

Tk = [k+ (n-1)] J

Speed up factor:

The speedup factor of a k stage pipeline over an equivalent non pipeline

is defined as

𝑠𝑘 =
𝑇1

𝑡𝑘
=

𝑛𝑘𝜏

𝑘𝜏 + (𝑛 − 1)𝜏
=

𝑛𝑘

𝑘 + (𝑛 − 1)

OPTIMAL NUMBER OF STAGES :

Let be the total time required for a no pipelined sequential program of a

given function to execute the same program has a maximum through put of

𝑓 =
1

𝑝
=

1

(
𝑡

𝑘
+ 𝑑)

𝑃𝐶𝑅 =
𝑓

𝑐 + 𝑘ℎ
=

1

(
𝑡

𝑘
+ 𝑑) (𝑐 + 𝑘ℎ)

SYNCHRONOUS MODEL:

Synchronous pipeline are illustrated clocked latches are used to interface

between stages the latches are mode with master slave flip flops which can

isolate inputs from outputs upon the arrival to the next stage simultaneously.

CLOCKING AND TIMING CONTROL:

The clock cycle 𝜏 bet the time delay of the circuitry in stage si and d the

time delay of the latch.

CLOCK CYCLE AND THROUGHPUT:

Denote the maximum stage delay as 𝜏mp and we can write 𝜏 as

𝜏 = max{𝜏i}1
𝑘 + 𝑑 = 𝜏𝑚 + d

 i

 At the using edge of the clock pulse the data is latched to the master

flip flops of each latch register in general 𝜏𝑚 ≫ 𝑑 by one to two orders of

magnitude the pipeline frequency is defined as the inverse of the clock period.

𝑓 =
1

𝜏

CLOCK SKEWING:

 I delay we except the clock pulse to arrive at all stages (latches) at the

same time let image be the time delay to the longest logic path within a tag and

tminthat of the shortest logic path within a stage.

NONLINEAR PIPELINE PROCESSORS:

 A dynamic pipeline can be reconfigured to perform variable function at

different times.

RESERVATION AND LATENCY ANALYSIS:

 These frees forward and feedback connection make the pipeline a

nontrivial task with their connections the output of the pipeline is not necessary

from the last stage.

1. Reservation tables:

 The reservation table for a static linear pipeline

is trivial in the sense that data flow follows a linear streamline.

2. latency analysis:

 Collision

 Forbidden Latency

 Latency Sequence

 Latency Cycle

 Average Latency

 Constant Cycle

 A collision or clash is a situation that occurs when two distinct pieces of

data have the same has value checksum finger print or cryptograph digest.

LATENCY

 It’s the amount of delay (or times) it takes to send information from

one point to the next latency in milliseconds or Ms.

COLLISION FREES SCHEDULING:

 Shortest average latency between initiations

without causing collisions.

 collision vector

 state diagrams

 greedy cycles

STATE DIAGRAM:

 A state diagram is a type of diagram used in computer science and

related fields to describe the behaviour of system.

GREEDY CYCLE:

 A simply cycle is a greedy cycle if each latency contained in a cycle

is the minimal latency (outgoing are) from a state in the cycle.

PIPELINE SCHEDULE OPTIMIZATIONS:

 An optimization technique based on MAL given below. The idea is

insert non compute delay stages into original pipeline.

 It Modify Reservation Table.

 Improve The State Diagram.

TECHNIQUES ARE:

 Bounds On The MAL (Minimal Average Latency)

 Delay Insertion

COLLISION VECTOR:

 The collision vector is a method of analysing how often we can

initiate a new operation into the pipeline and maintain synchronous flow

without collisions.

 Pipeline Throughput (Initiation Rate)

 Pipeline Efficiency (State Unitization)

 Mal(Minimal Average Latency)

 Lower bound by the maximum number of check marks in any row if

reservation table

 Average Latency To Any Greedy Cycle In State Diagram

 Upper Bounded By The Number Of Is In Initial Collision

Vector Plus1.

DELAY INSERTION:

 It’s Used To Modify The Reservation Table .

 This Leads To a Modified State Diagram Which May Produce

Greedy Cycle.

 Meeting the Lower Bound on the Mal.

UNIT- 4
MULTIPROCESSORS AND MULTICOMPUTER

 Multiprocessors System Interconnects

 Message Passing Mechanisms

 SIMD Computer Organization

 The Connection Machine CM – 5

 Fine Grain Multicomputer

MULTIPROCESSORS SYSTEM INTERCONNECTS:

 Parallel processing demands the use of efficient system interconnects for fast communication

among input/output and peripheral devices.

 Hierarchical buses

 Crossbar switches

 Multistage networks

NETWORK CHARACTERISTICS:

 Timing control

 Data transfer

 Control strategy

 Each of the above type of networks can be designed with many choices. The choices are based on

the topology timing protocol, switching method and control strategy.

TIMING CONTROL:

 Timing, switching and control are three major operational characteristics are under program

network.

DATA TRANSFER:

 A network can transfer data using either circuit switching or packet switching.

CONTROL STRATEGY:

 Network control strategy is classified as centralized control, a global controller receives request

from all devices, and request are handled by local devices independently.

HIERARCHICAL BUS SYSTEM:

 Connecting various system and sub system components in a computer. Each bus is formed with a

number of signal, control and power lines.

LOCAL BUS:

 Buses implemented within processors chip or on printed circuit boards are called local

buses.

 A memory board uses a memory bus to connect the memory with the interface logic.

 An I/O or network interface chip or board uses a data bus. Each of these local buses

consists of signal and utility lines.

BACKPLANE BUS:

 A backplane bus standards have been developed over time such as the VME bus, multibus II and

future bus as introduced to point – to – point switched interconnects have emerged as more efficient

alternatives.

I/O BUS:

 Input/output devices are connected to a computer system through I/O bus. Such as SCSI

(Small computer system interface) bus.

 This made coaxial cables.

EX:

 Printer, disc and other devices.

HIERARCHICAL BUSES AND CACHES:

 Wilson (1987) proposed hierarchical cache/bus architecture is multi level tree structure in

which the leaf nodes are processors and their private caches.

 An intercluster bus is used to provide communication among the cluster bus and the

intercluster bus.

 Each second level cache must have a capacity that is at least an order of magnitude larger

than the sum of the capacities of all first level caches beneath it.

CROSSBARS SWITCH MULTIPORT MEMEORY:

 Switches network provide dynamic inter connects between the input and outputs. The multistage

networks can be extended to large systems it the increased latency problem can be suitably addressed.

NETWORK STAGES:

 Single stage network

 Multistage network

SINGLE STAGE NETWORK (RECIRCULATING NETWORK)

 Recirculate many times to reaching their destinations. Cheaper to build.

MULTISTAGE NETWORK (OMEGA NETWORK, FLIP NETWORK BASELINE NETWORK)

 More than one stage of switch boxes. Network should be connected from any input to any output.

BLOCKING VERSUS NON – BLOCKING NETWORKS:

 Blocking

 Non – blocking

BLOCKING:

 A multistage network is called blocking if the simultaneous interconnects of some multiple input

– output pairs may result in conflicts in the use of switches or communication tasks.

NON – BLOCKING:

 ALL possible connections inputs and outputs by rearranging its connections, connections path

can always be established between any input and output pair.

CROSSBAR NETWORKS:

 In a crossbar networks, every input port is connected to the tree port through a cross point

switch without blocking. A crossbar network is a single at the cross points.

 Once the data is read from the memory, its value is returned to the requesting processor

along the same cross point switch. In general such a crossbar network requires the use of

n×m crosspoint switches.

CROSSPOINT SWITCH DESIGN:

 Out of n cross point switches in each column n×m crossbar mesh, only one can be connected at a

time. To resolve the contention for each memory module, each cross point switch must be designed with

extra hardware.

CROSSBAR LIMITATIONS:

 A single processor can send many requests to multiple memory modules for an n×n crossbar

network, at most n memory words can be delivered to at most n processors in each cycle.

MULTIPORT MEMORY:

 Because building a crossbar network into a large system is cost prohibitive, some

mainframe multiprocessors used a multiple memory used a multiple memory

organizations.

 Some of the processors are CPUs, some are I/O processors, and some are connected to

dedicated processors.

MULTISTAGE AND COMINING NETWORKS:

 Multistage networks are used to build in large multiprocessors system.

ROUTING IN OMEGA NETWORKS:

 This class of network was built into the Illinois cedar multiprocessor into the IBM RP3,

and into the NYU ultra computer. An 8 input omega network.

 In general an n – input omega network has log2n stage. The stages are labeled from o to

log2 n – 1 from the input end to the output end.

ROUTING IN BUTTERFLY NETWORK:

 This class of networks is constructed with crossbar switches as blocks the eight way

suffle function is used to establish the interested connections between stage o and stage 1.

 A three stage butterfly network is constructed for 512 inputs again with 8×8 crossbar

switches. Each of the 64×64 boxes in identical to the two stage butterfly network.

THE HOT – SPOT PROBLEM:

 When the network traffic is nonuiform a hotspot may appear cores ponding to a certain memory

module being excessively accessed by many processors at the same time.

 An atomic read modify write primitive fetch Add(x, e) has been developed to perform parallel

memory updates using the combining network.

FETCH AND ADD:

 This atomic memory operation is effective in implementing an n – way synchronization with a

complexity this operation, the semantic is,

𝑓𝑒𝑡𝑐ℎ & 𝐴𝑑𝑑 (𝑥, 𝑒)

{ 𝑡𝑒𝑚𝑝 ← 𝑥;

𝑥 ← 𝑡𝑒𝑚𝑝 + 𝑒;

𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑒𝑚𝑝 }

 When n processor attempt fetch &Add (x, e) at the same memory word simultaneously, the

memory is updated only once following a serialization principle. The sum of the N increments

e1+e2+……+en is produced in any arbitrary serialization of the N requests.

 One of the following operations will be performed it processors P1 executes Ans1←fetch &Add

(x, e) and P1 executes Ans2 ←fetch & Add (x, e2) simultaneously on the shared variable

𝐴𝑛𝑠1 ← 𝑥

𝐴𝑛𝑠2 ← 𝑥 + 𝑒1

 If the execution order is reserved the following values.

 𝐴𝑛𝑠 1 ← 𝑥 + 𝑒2

 𝐴𝑛𝑠2 ← 𝑥

 Regardless of the executing the value x+e1+e2 is stored in memory.

 It is the responsibility of the switch box to form the sum e1+e2 transmit the combined

request fetch & Add(x,e1,e2) store the value e1(or) e2 in a wait buffer of the switch and return the values

x and x+e to satisfy the original request fetch & Add(x,e2) respectively four steps.

APPLICATION AND DRAWBACKS:

 T he fetch & Add primitive is very effective in accessing sequentially allocated queue structure

in parallel with indention code that operation different data sets,

 𝐷𝑜 𝑎𝑙𝑙 𝑁 = 1 𝑡𝑜 100

 < 𝑐𝑜𝑑𝑒 𝑢𝑠𝑖𝑛𝑔 𝑁 >

 𝐸𝑛𝑑 𝑎𝑙𝑙

 The advantage of using a combining network to implement the fetch & Add operation is

achieve at a increase in network cost.

MULTISTAGE NETWORKS IN REAL SYSTEM:

 The IBM was designed to include 512 processors using a high speed omega network for

reads or writes and combining network for synchronization using fetch & Adds.

 A 128 port omega network in the RP3 had a bandwidth of 13 Gbytes/s using a 50 MHZ

clock.

MESSAGE PASSING MECHANISMS:

 Message passing in a multi computer network demands special hardware and software

support. We introduced the concept of virtual channels.

 Deterministic and adaptive routing algorithms (deadlock free message).

 Operation using virtual channels or virtual subnets and greedy routing algorithms.

 One – to – one(Unicast routing operations)

 One - to – many(Multicast routing operations)

 One – to –all(Broadcast routing operations)

MESSAGE ROUTING SCHEMES:

 Store and forward

 Wormbole routing schemes

In two generation of multicomputer.

MESSAGE FORMATS:

 A message is the logical unit for internodes communication. It is often assembled from an

asbitary number of fixed length packets, thus it may have a variable length.

 A packet is the basic unit containing the destination address for routing purpose.

PACKET:

 Basic unit containing destination address packet length range 64 to 512 bits.

FLIT:

 Sub divided packets routing information in header flits remaining flits containing data elements.

STARE AND FORWARD ROUTING:

 Packets are the basic unit information flow in a store and forward network.

 Source node intermediate node destination node.

 First stored in the buffer.

WORMBOLE ROUTING:

 Subdividing the packet into smaller flits latter generation of multicomputer implement

the wormhole routing scheme.

 All the flits in the same packet were transmitted in order as inseparable companion in a

pipelined fashion.

ASYNCHRONOUS PIPELINE:

 The pipelining of successive flits in a packet is done asynchronously using a stand shaking

protocol. Along the path an I bit ready/ request(R/A) line is used between adjacent routers.

LATENCY ANALYSIS:

 A time comparison between store and forward and wormhole routed networks is given L is the

packet length (in bits), W the channel bandwidth (in bits/s),D the distance (number of nodes averse minus

1) and flit length.

 The communication latency TSF store and forward network is expressed by

 TSF = L/W (D+1)

 The latency TWH for a wormhole routed network is expressed by.

 TWH = 2/W + F/W × D

 Equation 7.5 implies that TSF is directly proportional to D. In 𝜀q TWH = 𝐿 𝑊⁄ 𝑖 + 𝐿 ≫ 𝐹.

Thus the distance D has a religible effect on the routing latency.

DEADLOCK AND VIRTUAL CHANNELS:

 The communication channels between nodes wormhole routed multicomputer network are

actually shared by many possible source and destination pairs.

VIRTUAL CHANNELS:

 A virtual channel is a logical link between two nodes. It is formed by a flit buffer in the source

node, a physical channel between them, and a flit buffer in the receiver node. The concept of four virtual

channels sharing a single physical channel.

 Four flit buffers are used at the source node and receiver node, respectively. In other words the

physical channel is time shared by all virtual channels. The channel (wires or fibers) provides a

communication medium between them.

DEADLOCK AVOIDANCE:

 By adding two virtual channels v3 and v4. A Modified channel dependence graph is obtained by

using the virtual channels v3 and v4, after the use channel c2 instead of reusing c3 and c4.

FLOW CONTROL STRALEGIES:

 In this section, we examine various strategy developed to control smooth network traffic

flow without reusing congestion or deadlock situation.

 Based on these policies, we describe below deterministic and adaptive routing algorithms

developed for one –to –one communication.

PACKET COLLISION RESOLUTION:

 In order to move a flit between adjacent nodes in a pipeline of channels, three elements

must be present (1) the source buffer holding the flit, (2) the channel being allocated and

(3), the receiver buffer accepting the flit.

 Pure wormhole routing uses a blocking policy in case of packet collision the second

packet is being blocked from advancing, however it is not being abandon.

 The fourth policy is called detour the blocked packet is routed to a detour channel. The

blocking policy is called detour implement, but may result in the idling resources

allocated to the blocked packet.

DIMENSION ORDER ROUTING:

 Packet routing can be conducted deterministically or adaptively. In deterministic routing, the

communication path is completely determined by the source and destination addresses.

E – CUBE ROUTING ON HYPER CUBE:

 Consider an n – cube with n=2nbn-1, bn-2……b1b0. Thus the source code is

s=Sn+1……s1s0 and the destination node is d=dn-1……..d1d0.

 We denote the n dimensions as I=1, 2……..n where the ith dimension corresponds to the

(i-1) s bit in the node address.

X – Y ROUTING ON A 2D MESH:

 It is like a mesh connected networks X – Y routing format.

 Any source node to any designation node along with the x – y axis. Four possible routing.

i) East – north

ii) East – south

iii) West – North

iv) West – south

ADAPTIVE ROUTING:

 The main purpose of using adaptive routing is to achieve efficiency and avoid deadlock. The

concept of virtual channels makes adaptive routing economical and feasible to implement.

MULTICAST ROUTING ALGORITHMS:

 Various communication patterns are specified below. Routing efficiency is defined.

COMMUNICATION PATTERNS:

 A multicast pattern corresponds to one – to – many communications.

 A broadcast pattern corresponds to the case of one – to – all communication.

VIRTUAL NETWORK:

 Used to reduce the network traffic.

NETWORK PARTIOING:

 The concept of virtual networks leads to the partitioning of a given physical network into logical

sub networks for multicast communication.

SIMD COMPUTER ORGANIZATIONS:

 SIMD computers having a single instruction stream over multiple data streams. Vector processing

can also be carried out SIMD computers.

 Implementation modes

 The CM -2 architecture

 The masper MP-1 architecture

IMPLEMENDATION MODELS:

 Two SIMD computer models are described below based on the memory distribution and

addressing scheme based.

DIASTRIBUTED MEMORY MODEL:

 Spatial parallelism is exploited among the PES in an SIMD computer. A distributed memory

SIMD computer consists of an array of PES which are controlled by the same array control unit.

THE CM – 2 ARCHITECTURE:

 The connection machine CM – 2 produced by thinking Machines Corporation was a fine grain

MPP computer using thousands of bit slice PEs in parallel to achieve a peak processing speed of above 10

Gflops.

PROGRAM EXECUTION PARADIGM:

 All programs started execution on a front end which issued microinstruction to the back end

processing array when data parallel operations were desired.

PROCESSING NODES:

 CM -2 processors chips with memory and floating point chips. Each data processing code

contained 32 bit slice data processors, an optimal floating point accelerator and interfaces for

interprocessor communication.

THE MASSPAR MP – 1 ARCHITECTURE:

 This was a medium grain SIMD computer quid different from the MP - 2 parallel architecture

and MP – 1 hardware design are described below.

THE MASSPER MP – 1 ARCHITECTURE:

 The MP – 1 architecture consisted of four subsystem, the PE array, the array control unit, a UNIX

subsystem with standard I/O and a high speed I/O subsystem as depicted.

ARRAY CONTROL UNIT:

 The ACU was a 14 MIPS scalar RISC processor using a demand paging instruction memory.

THE PE ARRAY:

 Each processor board had 1024 PES and associated memory arranged as 64PE chip was

connected to eight neighbors via the X- net mesh and a global multistage crossbar routing network labled

s1, s2 and

 Each PE cluster was composed of 16PES and 16 processors memories (PEMS). Interprocessor

communication were carried but via three mechanisms.

1) ACU – PE array communication

2) N – net nearest neighbor communication

3) Global crossbar router communication

X – NET MESH INTERCONNECTS:

 The X- net interconnect directly connected each PE with its eight neighbor in the two

dimensional mesh. The connections to the PE array edges were wrapped around to from a 2 – D torus.

MULTISTAGE CROSSBAR INTERCONNECTS:

 The network provided global communication between all PES and formed the basics for MP- 1

I/O system. Each PE cluster shared an originating port connected to router stage s1 and a target part

connected to router stage s3.

PROCESSOR ELEMENTS AND MEMORY:

 The PE design had mostly data path logic and instruction fetch or decode logic. Both

integer and floating point computational executed in each PE with register based RISC

architecture.

 Most data movement with each PE occurred on the NIBBCE bus and the BIT bus.

PARALLEL DISK ARRAYS:

 Another feature worthily of mention is the massively parallel I/O architecture

implemented in the MP – 1.

 The disk array provides up to 17.3 Gbytes of formatted capacity with a 9 – Mbytes/s

sustained disk I/O rate.

THE CONNECTION MACHINE CM – 5:

 The grand challenge application drives the development of present and future MPP system to

achieve higher and higher performance goals.

A SYNCHRONIZED MIMD MACHINE:

 The CM -2 and its predecessor were criticized for having a rigid SIMD architecture, limiting

general purpose application.

THE BULDING BLOCKS:

 The machine was designed to contain from 32 to 16, 384 processing nodes each of which could

have a 32 – MHz SPARC processor, 32 M bytes of memory and a 128 –M Flops vector processing unit

capable of performing 64 – bit floating point operations.

THE CM- 5 NETWORK ARCHITECTURE:

 The data network was based on the fat – tree concept introduced by leiserson (1985), we explain

how it is applied in CM – 5 construction.

FAT TREES:

 A fat tree is more like a real tree in that it becomes thinker as it acquires more leaves. Processing

nodes control processors and I/O channels are located are to leaves of a fat tree.

THE DATA NETWORK:

 To route a message from one processor node to another , the message was sent up the tree to the

least common ancestor of the two processors and then down to the destination.

CONTROL PROCESSSORS AND PROCESSING NODES:

 The functional architecture of the control processing nodes is described in this subsection.

CONTROL PROCESSOR:

 The basic control processor consisted of a RISC microprocessor (CPU), memory subsystem, I/O

with local disks and Ethernet connections and a CM -5 network interface.

PROCESSING NODES:

 It was a SPARC based processor with a memory subsystem, consisting of a memory controller

and 8.16 or 32 Mbytes of DRAM memory.

VECTOR UNITS:

 Vector units could be added between the memory bank and the system bus as an optional feature.

INTER PROCESSOR COMMUNICATION:

 We have described the high speed scanning and spreading mechanisms built into the CM – 2. CM

-2 in the CM – 5 these mechanism were designed to be further upgrade into four categories of

interprocessors communication, application, reduction, permutation, parallel prefix.

REDUCTION:

 Vector reduction was implemented on the CM – 2 by fast scanning, and on the CM – 5 the

mechanism was further generalized as the opposite of replication.

FINE GRAIN MULTICOMPUTERS:

 Message passing multicomputer are used to execute medium grain programs with approximately

10ms tasks size as in the IPSC.

FINE GRAIN PARALLELISM:

 This comparison leads to the rationales for developing fine grain multicomputer.

LATENCY ANALYSIS:

 The computing granularity and communication and latency of leading early examples of

multiprocessors, data parallel computers, and medium and fine grain multicomputer are

summarized in table.

 The communication latency TC measure the data or message transfer time on a system

interconnects. The sum TC + TS gives the total time required for IPC.

FINE GRAIN PARALLELISM:

 The grain size Tg is measured by the execution time of a typical program, including both

computing time and communication time involved.

THE MIT J- MACHINE:

 The architecture and building block of the MIT J- machine, its instruction set and system design

consideration we described below based on the paper by dally et al (1992).

THE J – MACHINE ARCHITECTURE:

 The K – ary n – cube networks were applied in the MIT – 5 machines. The initial prototype J –

machine used a 1024 node network (8×8×16), which was a reduced 16 – ary 3 – cube with 8 nodes along

the x and y dimensions and 16 nodes along the z – dimensions.

INSTRUCTION SET ARCHITECTURE:

 The MDP extended a conventional microprocessor instruction set architecture with instruction to

support parallel processing.

COMMUNICATION SUPPORT:

 The MDP provide hardware support for end – to – end message delivery, buffering and task

scheduling.

SEND R0, 0: Send net address (priority 0)

SEND R1, R2, 0: Header and receiver (priority 0)

SEND R3 (3, A3), 0: Selector and communication and message.

THE ROUTER DESIGN:

 The routers formed the switches in a J – machine network and delivered message their

destinations.

 Each router contained two separate virtual networks with different priorities that shared

the same physical channels.

THE CALTECHN MOSAIC C:

 The Caltech mosaic c was an experimental fine grain multicomputer that exployed single chip

and advanced packaging technology to demonstrate the performance/cost advantages of fine grain

multicomputer architecture.

FROM COSMIC CUBE TO MOSAIC C:

 The programs in microelectronics over the preceding decode was such that mosaic nodes

were=60 times faster, used=20 times less power, were=100 times smaller and were=25 times less

expensive to manufacture than cosmic cube nodes.

MOSAIC C NODES:

 The mosaic multicomputer node was a single 9.25 mm×10.00 mm chip fabricated in 1.2 𝜇𝑚

feature size two level mental CMOS process. At 5-v operation, the synchronous parts of the chip

separated with large margins at a 30 – MHZ clock rate and the chip dissipated=0.5 w.

MOSAIC C 8×8 BOARDS:

Sixty four mosaic chips were packaged by type automated bonding (TAB) in an 8×8 array on a circuit

board. Host interface boards were also used to connect the mosaic arrays and workstation.

APPLICATION AND FUTURE TRENDS:

 The mosaic may be taken as the origin of two scaling tracks.

1) Single chip nodes are a technologically attractive point in the design space in multicomputer.

2) It was also forecasts that constant node, computers centralized would allow a mosaic 8×8 board

to be implemented as 9 single chip, with about 20 times the performance per node within 10

years.

 UNIT -5

 SOFTWARE FOR PARALLEL PROGRAMMING

 Parallel programming models

 Parallel languages and compiler

 Dependence analysis of data

PARALLEL PROGRAMMING MODEL:

 A programming model is a collection of program abstraction providing a programmer

a simplified and set of transparent view of the computer hardware/software system. Five

models are characterized below for these computers that exploit parallelism with different

execution paradigms.

SHARED VARIABLE MODEL:

 In all programming systems, we consider processor active resources and

memory and I/O devices passive resources.

 A program is a collection of processes. Parallelism depends on how

interprocess communication (IPC) is implemented. Fundamental issues in

parallel programming are centered around the specification creation,

suspension, reaction, termination and synchronization or different processes.

SHARED VARIABLE COMMUNICATION:

 Multiprocessor programming is based on the use of shared variables in a common

memory for IPC.

 Fine grain MIMD parallelism is exploited in tightly coupled multiprocessors.

Interprocessor unconditionally, depending on the mechanisms used.

CRITICAL SECTION:

 A critical seduction (CS) is a code segment accessing shared variables, which must be

executed by only one process at a time and which one started must be completed without

interruption.

 MUTUAL EXECLUSION – At most one process executing the CS at a time.

 NO DEADLOCK IN WAITING – No circular wait by two or more processes trying

to enter the CS.

 NONPREEMPTION – No interrupt until completion, once entered the CS.

 EVANTUAL ENTRY – A process attempting to enter its CS will eventually succeed.

PROTECTED ACCESS:

 The main problem associated with the use of a CS is avoiding race conditions

where concurrent process executing in different orders produce different

results.

 Shared variable programming requires special atomic operations for IPC, new

language constructs for expressing parallelism.

MULTIPROGRAMMING:

 A multiprogrammed multiprocessor allows multiple programs to run concurrently

through time sharing of all the processor in the system, multiple programs are inter leaved in

their CPU and I/O activities.

MULTIPROCESSING:

 In other words, we define MIMD multiprocessing with fine grain instruction level

parallelism. MIMD multiprocessing exploits course grain procedure level parallelism. This is

quite different from the operations implemented on a message passing system.

MULTITHREADING:

 The traditional UNIX/OS has a single threaded kernel in which only one

process can receive OS kernel service at a time.

 The concept of multithreading is an extension of the concepts of multitasking

and multiprocessing.

PARTIONING AND REPLICATION:

 The goal of parallel processing is to exploit parallelism as much as possible

with the lowest overhead.

 Program replication refers to duplication of the same program code for parallel

execution on multiple processors over different data sets.

SHEDULING AND SYNCHRONIZATION:

 Dynamic scheduling catches the run time conditions. However dynamic

scheduling requires task context switching, preemption and much more OS

support.

 In a conventional (IPC) is conducted at the process level. This mutual

exclusion property is enforced with the use of locks, semaphores and monitors

to be described.

CACHE COHERENCE AND PROTECTION:

 Besides maintaining data coherence in a memory hierarchy, multi processors

must assume data consistency between private caches and the shared memory.

 These coherence control operations require special bus or network protocols

for implemented.

MESSAGE PASSING MODELS:

 Two processes D and E residing at different processor nodes may communicate with

each other by passing message through a direct or indirect network.

 Synchronous message passing

 Asynchronous message passing

 Distributing the computation

SYNCHRONOUS MESSAGE PASSING:

 Synchronous message passing must synchronize the sender process and the

receiver process in time and space, just like a telephone call using circuit

switched lines.

 In a synchronous paradigm, the passing of a message must synchronize the

sending process and the receiving process in time and space.

ASYNCHRONOUS MESSAGE PASSING:

 Asynchronous communication does not require that message sending and

receiving by synchronized in time and space.

 Nonblocking can be achieved by asynchronous message passing in which two

processors do not have to be synchronized either in timer or in space.

 Asynchronous communication requires to use of buffers to hold the messages

along the path of the connecting channels.

DISTRIBUTING THE COMPUTATIONS:

 Program replication and data distribution are used in multicomputer. The processors

in a multicomputer (or a NORMA machine) are loosely coupled in the sense that they do not

share memory.

DATA PARALLEL MODEL:

 Data parallel programs require the use of pre – distributed data structure

makes a big difference in data parallel programming.

 It is applied to fine grain problems using regular grids.

 Hardware synchronization is enforced by the control unit to carry out the lock

step execution of SIMD program.

 Data Parallelism

 Array Language Extensions

 Compiler Support

DATA PARALLELISM:

 A latter SIMD computer, the connection machine CM -2 offered bit slice fine

grain data parallelism using 16, 384 PES concurrently in a single array

configuration. This demanded a lower degree of array segmentation and thus

offered higher flexibility in programming.

 Instead by, inter PE communication are directly controlled by hardware.

ARRAY LANGUAGE EXTENSIONS:

 Array extensions in data parallel languages are represented by high level data types.

The array syntax enables the removed of some nested loops in the code and should reflect the

architecture of the array processor.

EX:

 Array preprocessing languages are CFD for Iliac IV, DAP Fortran for the

AMT/distributed array processor. C* for the TMC/ connection machine.

COMPILER SUPPORT:

 Compiler optimized control of SIMD machine hardware allows the programmer to

drive the PE array transparently the compiler must separate the program into scalar and

components with the OS environments.

OBJECT ORIENTED MODEL:

 In this model, objects are dynamically created ands manipulated processing is

performed by sending and receiving message among objects.

 Concurrent oop

 An Actor Model

 Parallelism Coop

CONCURRENT OOP:

 The popularity of object oriented programming (OOP) is attributed to three

application demands.

 As a matter of fact, program abstraction leads to program modularity and

software reusability as is commonly experienced with OOP.

 The development of concurrent object oriented programming (COOP)

provides alternative models for multiprocessors or a multicomputer.

AN ACTOR MODEL:

 Actors are self contained, iterative, independencecomponenys of a computing system

that communicate by asynchronous message passing.

1) CREATE – Creating an actor from a behavior description and a set of parameters.

2) SEND – TO – Sending a message n to another actor.

3) BECOME – An actor replacing its own behavior by a new behavior.

PARALLELISM COOP:

 Three common patterns of parallelism have been practice of COOP.

 FIRST, pipeline concurrency involves the overlapped enumeration of

successive solution and testing of pipeline.

 SECOND, divide and conquer concurrency involve the concurrent elaboration

of different subprogram to produce a solution to the overall problems.

 THIRD, pattern is called cooperative problem solving.

FUNCTIONAL AND LOGIC MODELS:

 Two language oriented programming models for parallel processing are described

below. We reveal opportunities for parallelism in these potential in AI applications.

 Functional Programming Model

 Logic Programming Model

FUNCTIONAL PROGRAMMING MODEL:

 A functional programming language emphasizes the functionality of a

program and should not produce side effects after execution.

 The clack of side effects opens up much more opportunity for parallelism.

Precedence restrictions occur only as a result of function application. All

single assignment and dataflow language are functional in nature.

LOGIC PROGRAMMING MODEL:

 Based on predicated logic, logic programming is suitable for knowledge

processing dealing with large database.

 Concurrent prolog, developed by Shapiro (1986), and parlog introduced by

Clark (1987) are two parallel logic programming language.

 In many ways, the FGCS project was a marriage of parallel processing

hardware and AI software.

PARALLEL LANGUAGES AND COMPILERS:

 The environment for parallel computers is much more demanding than that for

sequential computers. Users should not have no spend a lot of time programming hardware

details.

LANGUAGE FEATURES FOR PARALLELISM:

 Chang and smith (1990) classified the language feature for parallel programming into

six categories according to functionality.

OPTIMAZATION FEATURES:

 AUTOMATED PARALLELIZER – Examples are: Express C automated

parallizer and the Alliant FX Fortran compiler.

 SEMI AUTOMATED PARALLELIZER - Needs compiler directives or

programmer’s interaction such as DINO.

 ITERACTIVE RESTRUCTURE SUPPORT - Static analyzer, run time

statistics, dataflow graph and code translate for restructuring Fortran code,

such as the MIMD from pacific sierra.

AVAILABILITY FEATURES:

 SCALABILITY – The language is scalable to the number of processors

available and independent of hardware topology.

 COMPABILTY – The language is compatible with an established sequential

language.

 PORTABILITY – The language is portable to shared memory

multiprocessors, message passing multicomputer or both.

SYNCHRONIZATION/ COMMUNICATION FEATURES:

 Single assignment languages

 Shared variables(locks) for IPC

 Logically shared memory

 Send and receive for message passing

 Remote procedure call

 Data flow languages

CONTROLL OF PARALLELISM:

 Coarse medium of mine grain

 Explicit versus implicit parallelism

 Global parallelism in the entire program

 Loop parallelism in iterations

 Task split parallelism

 Shared task queue

 Divide and conquer paradigm

 Shared abstract data types.

DATA PARALLELISM FEATURES:

 RUN TIME AUTOMATIC DECOMPOSITION - Data are automatically

distributed with no user intervention as in express.

 MAPPING SPECIFICATION – Provides a facility for users to specify

communication patterns or how data and process are mapped onto the

hardware as in DIWO.

 VIRTUAL PROCESS SUPPORT – The compiler maps the virtual processors

dynamically or statically onto the physical processors.

 DIRECT ACCESS TO SHARED DATA – Shared data can be directly

accessed without monitor control as in Linda.

 SPMD SUPPORT – SPMD programming as in DIWO and hyper tasking.

PROCESS MANAGEMENT FEATURES:

 DYNAMIC PROCESS CREATION AT RUN TIME.

 LIGHTWEIGHT PROCESS – Compared to UNIX process.

 REPLICATED WORKS – Same program on every node with

different data.

 PARTITIONED NETWORKS – Each processor or node might have

more than one process and all processor nodes.

 AUTOMATIC LOAD BALANCING – The worked is dynamically

migrated among busy and idle node to achive the same amount of at

various processor nodes.

PARALLEL LANGUAGE CONSTRUCTS:

 FORTRAN 90 ARRAY NOTATIONS:

 A multidimensional data array is represented by an array name indexed by a

sequence of subscript triples, one for each dimension. Triples for different dimensions are

separated by common.

 E1: e2: e3

 E1: e2

 E1: *: e3

 E1: *

 E1

 *

PARALLEL FLOW CONTROL:

 The conventional Fortran DO loop declares that all scalar instruction within

the (DO, End do) pair are executed sequentially and so are the successive

iterations.

 When the successive iterations of a loop depend on each other, we use the(DO

across, End across) pair to declare parallelism with loop carried dependences.

 Do across I= 2, N

 Do J = 2, N

S1: A (I, J) = (A (I (J-1) + A (I, J+1))/2

 End do

 End across

 Another program construct is the (Cobegin, Coend) pair. Synchronizations among

concurrent processes created within the pair are implied.

 Cobegin

 P1

 P2

 .

 .

 Pn

 Coend

 Causes process P1, P2, …….Pn to start simultaneously and to proceed concurrently

until they have all ended.

 The Join Q command recombines the two processes into one process.

OPTIMIZING COMPILERS FOR PARALLELISM:

 Because high level languages are used almost exclusively to write programs today,

compilers have become a necessity in modern computers.

FLOW ANALYSIS:

 This phase reveals the program flow patterns in order to determine data and

control dependences in the source code.

 Generally speaking, instruction level parallelism is exploited in superscalar or

VLSI processors.

PROGRAM OPTIMIZATIONS:

 This refers to the transformation of user programs in order to explore the

hardware capabilities as possible.

 Transformation can be conducted at the loop level, locating level, or

perfecting level with the ultimate goal of reaching global optimization.

Parallel code generation is very different for different computer classes.

 Different program use different pass unit and thus go though different sequence of

transformation.

 Paraphrase is retagetable to produce code for different classes of parallel vector

computers.

The PFC and Parascope:

 PFC (Allen and Jenney , 1984) performed syntax analysis including the following

four steps:

 Interprocedural flow analysis using call graph.

 Standard transformations such as do-loop normalization subscript categorization

deletion of dead etc….

 Dependence analysis which applied the seperability GCD and Bannered tests jointly.

 Vector code generation PFC further implemented a parallel code generation

algorithm.

 Commercial compilers:

Optimizing compilers have also been developed in a number of commercial parallel/

vector computer, including the alliant FX/F Fortran compiler the convex parallel/vectorizing

compiler the cray CFT compiler and Intel IPSC-VX compiler.

Dependence analysis of data arrays:

Iteration space and dependence analysis:

Flow dependence antidependence and output dependence were defined for scalar data

precise and efficient dependence for scalar data precise and efficient dependence tests are

essential to the effectiveness of a parallelizing complier.

Dependence Testing:

Calculating data dependence far array is complicated by the fact. That two array

references may not access the same memory location.

Do i1 = L1, U1

Do i2 = L2, U2

………………..

Do in = Ln, Un

S1: A (t (i1,………………in)…….tm (i1 ……in))……

S2: ………= A (g1 (i1 ……in),…………..gm (i……in))…

End do

………

End do

End do

Dependence Equation:

Let α and β be vector of n integer index within the range of the upper and lower bounds of the

n loops.

fi(α)=gi(β) ∀i, 1 ≤i ≤m

Distance and direction vector:

Suppose there exists a data dependence for α=(α1, α2, ………..αn) and β(β1,

β2,………..βn)

𝑑𝑖 = {

< 𝑖𝑓 ∝ 𝑖 < 𝛽𝑖
= 𝑖𝑓 𝛼𝑖 = 𝛽𝑖
> 𝑖𝑓 𝛼; > 𝛽𝑖

For example, consider the following loop nest

Do I = L1, U1

Do j = L2, U2

Do k = L3, U3

A (i+1, j, k-1) = A (I, j, k) +c

End Do

End DO

End DO

The distance and direction vectors for the dependence between interations along three

dimensions of the array A are (1, 0, -1) and (<, =, >) respectively.

Subscript Separability and partitioning:

Subscript categories:

 A subscript is said to be zero index variable (ZIV) if the subscript position contains no

index no index in either references.

 Any subscript with more than one index is said to be multiple index variable (MIV).

Subscript separability:

If all the subscripts are separable we may compute the direction vector for each

subscript independently and merge the direction vector on a positional baris with full

precision.

Subscript portioning:

In the following loop nest the first subscript yields the direction vector (<) for the i=loop

the second subscript yields the direction vector (=) for the J=loop.

Do I = L1, U1

Do J = L2, U2

A (i+1, 5) =A (I, N) +c

End do

End do

Thus a merge yields the following set of direction vector for both dimensions,

{(<,<) , (<,=) , (<,>)}

Categorized dependence tests:

The testing algorithm:

1. Partition the subscripts into separable and minimal coupled groups using the

following algorithm.

Subscript partitioning algorithm (go++, and Tseng).

Input: A pair of m-dimensional algorithm array references containing subscript s1….

.Sm enclosed in n loops with indices I1……In.

Output: A set of portions P1……Pn n≤n, each containing a separable or minimal

coupled group

Test categories:

A subscript expression is linear if it has the form a1 i1 + a2 i2 + ……. +an in Te

where ik is the index for the loop at nesting level k, expressions.

The ZIV test:

The ZIV test is a dependence test performance on two loops invariant expressions if

the difference simplifies to a none zero constant, we have proved independence.

The SIV test:

An SIV subscript for index I is said to be strong if it has from,

(Ai+c1, ai+c2), i.e.

𝑑 = 𝑖1 − 𝑖 =
𝑐1 − 𝑐2

𝑎

Dependence exists it and only it d is an integrated|𝑑| ≤ 𝑢 − 𝑙, where u and l are the loop

under and lower bounds,

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = {

< 𝑖𝑓 𝑑 < 0
= 𝑖𝑓 𝑑 = 0
= 𝑖𝑓 𝑑 = 0

Were Zero SIV test:

The care in which a1=0 or a2 =0 is called a weak – zero SIV subscript it a2 = 0 the

dependence equation reduces to

 𝑖 =
𝑐2−𝑐1

𝑎1

Weak crossing SIV test:

 All subscribe where a2 = a, are weak crossing SIV there subscribe typically

occur as part of choler decomposition.

𝑖 =
𝑐2 − 𝑐

2𝑎

The MIV tests:

 SIV tests can be extended to handle complex iteration spaces where loop bounds may

be functions of other loop includes.

EX:

 Triangular or trapezoidal loops.

